Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T08:12:25.614Z Has data issue: false hasContentIssue false

Bubble formation in nuclear glasses: A review

Published online by Cambridge University Press:  08 March 2019

Laura Leay*
Affiliation:
Dalton Cumbrian Facility, The University of Manchester, Moor Row, Cumbria CA24 3HA, U.K.
Mike T. Harrison
Affiliation:
Waste and Residues Processing Services, National Nuclear Laboratory, Sellafield, Seascale CA20 1PG, U.K.
*
a)Address all correspondence to this author. e-mail: laura.leay@manchester.ac.uk
Get access

Abstract

Highly radioactive waste is incorporated into a glass matrix to convert it into a safe, passive form suitable for long-term storage and disposal. It is currently known that alpha decay can generate gaseous species, which can nucleate into bubbles, either through the production of helium or from ballistic collisions with the glass network that liberate oxygen. An effective method to probe this phenomenon utilizes ion beams to either directly implant helium or investigate the damage due to ballistic collisions. This paper provides an overview of the methodology, summarizes the results of current studies, and draws comparisons between them. We find that the irradiation scheme as well as the temperature and composition of the glass are important in determining whether bubble formation will occur. We also explore how analytical techniques can promote bubble formation and suggest avenues for further work.

Type
REVIEW
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

Weber, W.J., Ewing, R.C., Angell, C.A., Arnold, G.W., Cormack, A.N., Delaye, J.M., Griscom, D.L., Hobb, L.W., Navrotsky, A., Price, D.L., Stoneham, A.M., and Weinberg, M.C.: Radiation effects in glasses used for immobilization of high-level waste and plutonium disposition. J. Mater. Res. 12, 1946 (1997).CrossRefGoogle Scholar
Kerrache, A. and Delaye, J-M.: Interstitial sites for He incorporation in nuclear glasses and links to the structure: Results from numerical investigation. Nucl. Instrum. Methods Phys. Res., Sect. B 326, 269 (2014).CrossRefGoogle Scholar
Shackleford, J.F.: Gas solubility and diffusion in oxide glasses—Implications for nuclear wasteforms. Procedia Mater. Sci. 9, 278 (2014).CrossRefGoogle Scholar
Gin, S., Abdelouas, A., Criscenti, L.J., Ebert, W.L., Ferrand, K., Geisler, T., Harrison, M.T., Inagaki, Y., Mitsui, S., Mueller, K.T., Marra, J.C., Pantano, C.G., Pierce, E.M., Ryan, J.V., Chofield, J.M., Steefel, C.I., and Vienna, J.D.: An international initiative on long-term behavior of high-level nuclear waste glass. Mater. Today 16, 243 (2013).CrossRefGoogle Scholar
Nuclear Decommissioning Authority: Experimental Studies of the Chemical Durability of U.K. HLW and ILW Glass; RWM005105, AMEC/103498/03 (Amec: Didcot, UK, 2016).Google Scholar
Taylor, T.A., Short, R.J., Gribble, N.R., Roe, J., and Steele, C.J.: Rhenium volatilisation as caesium perrhenate from simulated vitrified high level waste from a melter crucible. In GLOBAL 2013 Conference Proceedings, American Nuclear Society, Vol. 1663 (American Nuclear Society: La Grange Park, Illinois, 2013); p. 450.Google Scholar
Peuget, S., Cachia, J-N., Jégou, C., Deschanels, X., Roudil, D., Broudic, V., Delaye, J-M., and Bart, J-M.: Irradiation stability of R7T7-type borosilicate glass. J. Nucl. Mater. 354, 1 (2006).CrossRefGoogle Scholar
Peuget, S., Fares, T., Maugeri, E.A., Carabello, R., Charpentier, T., Martel, L., Somers, J., Janssen, A., Wiss, T., Rozenblum, F., Magnin, M., Deschanels, X., and Jégou, C.: Effect of 10B(n, α)7Li irradiation on the structure of a sodium borosilicate glass. Nucl. Instrum. Methods Phys. Res., Sect. B 327, 22 (2014).CrossRefGoogle Scholar
DeNatale, J.F. and Howitt, D.C.: A mechanism for radiation damage in silicate glasses. Nucl. Instrum. Methods Phys. Res., Sect. B 1, 489 (1984).CrossRefGoogle Scholar
Ollier, N., Rizza, G., Boizot, B., and Petite, G.: Effects of temperature and flux on oxygen bubble formation in Li borosilicate glass under electron beam irradiation. J. Appl. Phys. 99, 073511 (2006).CrossRefGoogle Scholar
Mir, A.H., Boizot, B., Charpentier, T., Gennisson, M., Odorico, M., Podor, R., Jégou, C., Bouffard, S., and Peuget, S.: Surface and bulk electron irradiation effects in simple and complex glasses. J. Non-Cryst. Solids 453, 141 (2016).CrossRefGoogle Scholar
DeNatale, J.F. and Howitt, D.G.: The gamma-irradiation of nuclear waste glasses. Radiat. Eff. 91, 89 (1985).CrossRefGoogle Scholar
McGann, O.J., Bingham, P.A., Hand, R.J., Gandy, A.S., Kavčič, M., Žitnic, M., Bučar, K., Edge, R., and Hyatt, N.C.: The effects of γ-radiation on model vitreous wasteforms intended for the disposal of intermediate and high level radioactive wastes in the United Kingdom. J. Nucl. Mater. 429, 353 (2012).CrossRefGoogle Scholar
Manara, D., GranDjean, A., and Neuville, D.R.: Advances in understanding the structure of borosilicate glasses: A Raman spectroscopy study. Am. Mineral. 94, 777 (2009).CrossRefGoogle Scholar
Calas, G., Cormier, L., Galoisy, L., and Jollivet, P.: Structure–property relationships in multicomponent oxide glasses. C. R. Chim. 5, 831 (2002).CrossRefGoogle Scholar
Calas, G., Galoisy, L., Cormier, L., Ferlat, G., and Lelong, G.: The structural properties of cations in nuclear glasses. Procedia Mater. Sci. 7, 23 (2014).CrossRefGoogle Scholar
Shackelford, J.F.: Gas solubility and diffusion in oxide glasses—Implications for nuclear wasteforms. Procedia Mater. Sci. 7, 278285 (2014).CrossRefGoogle Scholar
Shelby, J.E.: Helium diffusion and solubility in K2O–SiO2 glasses. J. Am. Ceram. Soc. 57, 260263 (1974).CrossRefGoogle Scholar
Gutierrez, G., Peuget, S., Hinks, J.A., Greaves, G., Donnelly, S.E., Oliviero, E., and Jégou, C.: Helium bubble formation in nuclear glass by in situ TEM ion implantation. J. Nucl. Mater. 452, 565 (2014).CrossRefGoogle Scholar
Hall, A.R., Dalton, J.T., Hudson, B., and Marples, J.A.C.: Development and radiation stability of glasses for highly radioactive wastes. In Proceeding of the Symposium on Management of Radioactive Wastes from the Nuclear Fuel Cycle, Vol. 2 (International Atomic Energy Agency: Vienna, Austria, 1976); p. 3.Google Scholar
Howitt, D.G., Chan, H.W., DeNatale, J.F., and Heuer, J.P.: Mechanism for the radiolytically induced decomposition of soda–silicate glasses. J. Am. Ceram. Soc. 74, 1145 (1991).CrossRefGoogle Scholar
Boizot, B., Ollier, N., Olivier, F., Petite, G., Ghalen, D., and Malchukova, E.: Irradiation effects in simplified nuclear waste glass. Nucl. Instrum. Methods Phys. Res., Sect. B 240, 146 (2005).CrossRefGoogle Scholar
DeNatale, J.F., Howitt, D.G., and Arnold, G.W.: Radiation damage in silicate glass. Radiat. Eff. 98, 63 (1986).CrossRefGoogle Scholar
Evron, R., Cohen, Y., Regev, O., and Eyal, Y.: Ion Implantation Induced Microstructural Damage in a Nuclear Waste Glass (Nuclear Society of Israel: Haifa, Israel, 1994); pp. VIII-2VIII-7.Google Scholar
Mir, A.H., Peuget, S., Toulemonde, M., Jégou, C., Miro, S., and Bouffard, S.: Defect recovery and damage reduction in borosilicate glasses under double ion beam irradiation. Europhys. Lett. 112, 36002–1 (2015).CrossRefGoogle Scholar
Karakurt, G., Abdelouas, A., Guin, J-P., Nivard, M., Sauvage, T., Paris, M., and Bardeau, J-F.: Understanding of the mechanical and structural changes induced by alpha particles and heavy ions in the French simulated nuclear waste glass. J. Nucl. Mater. 475, 243 (2016).CrossRefGoogle Scholar
Chen, L., Zhang, D.F., Lv, P., Zhang, J.D., Du, Z., Yuan, W., Nan, S., Zhu, Z.H., and Wang, T.S.: Evolutions of molecular oxygen formation and sodium migration in Xe ion irradiated borosilicate glasses. J. Non-Cryst. Solids 448, 6 (2016).CrossRefGoogle Scholar
Dube, C.L., Stennett, M.C., Gandy, A.S., and Hyatt, N.C.: Simulation of alpha decay of actinides in iron phosphate glasses by ion irradiation. Nucl. Instrum. Methods Phys. Res., Sect. B 371, 424 (2016).CrossRefGoogle Scholar
Harrison, M.T.: Vitrification of high level waste in the UK. Procedia Mater. Sci. 7, 10 (2014).CrossRefGoogle Scholar
Ziegler, J.F., Biersack, J.P., and Littmark, U.: The Stopping and Range of Ions in Matter (Pergamon, New York, 1985).CrossRefGoogle Scholar
Bethe, H. and Ashkin, J.: Experimental Nuclear Physics, Segré, E., ed. (J. Wiley, New York, 1953); p. 253.Google Scholar
Lindhard, J., Scharff, M., and Schiott, H.E.: Range concepts and heavy ion ranges. Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 33, 1 (1963).Google Scholar
Sigmund, P. and Schinner, A.: Progress in understanding heavy-ion stopping. Nucl. Instrum. Methods Phys. Res., Sect. B 382, 14 (2016).CrossRefGoogle Scholar
Burns, W.G., Hughes, A.E., Marples, J.A.C., Neilson, R.S., and Stoneham, A.M.: Effects of radiation on the leach rates of vitrified radioactive waste. J. Nucl. Mater. 107, 245 (1982).CrossRefGoogle Scholar
Leay, L., Bower, W., Horne, G., Wady, P., Baidak, A., Pottinger, M., Nancekievill, M., Smith, A.D., Watson, S., Green, P.R., Lennox, B., Laverne, J.A., and Pimboltt, S.M.: Development of irradiation capabilities to address the challenges of the nuclear industry. Nucl. Instrum. Methods Phys. Res., Sect. B 343, 6269 (2015).CrossRefGoogle Scholar
Wady, P.T., Draude, A., Shubeta, S.M., Smith, A.D., Mason, N., Pimblott, S.M., and Jimenez-Melero, E.: Accelerated radiation damage test facility using a 5 MV tandem ion accelerator. Nucl. Instrum. Methods Phys. Res., Sect. A 806, 109 (2016).CrossRefGoogle Scholar
Arribart, H. and Abriou, D.: Ten years of atomic force microscopy in glass research. Ceram. Silik. 44, 121 (2000).Google Scholar
Mir, A.H., Monnet, I., Touelmonde, M., Bouffard, S., Jégou, C., and Peuget, S.: Mono and sequential ion irradiation induced damage formation and damage recovery in oxide glasses: Stopping power dependence of the mechanical properties. J. Nucl. Mater. 469, 244 (2016).CrossRefGoogle Scholar
Terekhov, A.Y., Heuser, B.J., Okuniewski, M.A., Averback, R.S., Seifert, S., and Jemian, P.R.: Small-angle X-ray scattering measurements of helium-bubble formation in borosilicate glass. J. Appl. Crystallogr. 39, 647 (2006).CrossRefGoogle Scholar
Chamssedine, F., Sauvage, T., Peuget, S., Fares, T., and Martin, G.: Helium diffusion coefficient measurements in R7T7 nuclear glass by 3He(d,α)1H nuclear reaction analysis. J. Nucl. Mater. 400, 175 (2010).CrossRefGoogle Scholar
Fares, T., Peuget, S., Chamssedine, F., Sauvage, T., Bouty, O., Broudic, V., Deschanels, X., Maugeri, E., Bès, R., and Jégou, C.: Helium solubility in SON68 nuclear waste glass. J. Am. Ceram. Soc. 95, 3854 (2012).CrossRefGoogle Scholar
Bès, R., Sauvage, T., Peuget, S., Haussy, J., Chamssedine, F., Oliviero, E., Fares, T., and Vincent, L.: Helium mobility in SON68 borosilicate nuclear glass: A nuclear reaction analysis approach. J. Nucl. Mater. 443, 544 (2013).CrossRefGoogle Scholar
Markelj, S., Ogorodnikova, O.V., Pelicon, P., Schwarz Selinger, T., Vavpetič, P., and Čadež, I.: In situ nuclear reaction analysis of D retention in undamaged and self-damaged tungsten under atomic D exposure. Phys. Scr. T159, 014047 (2014).CrossRefGoogle Scholar
Peuget, S., Delaye, J-M., and Jégou, C.: Specific outcomes of the research on the radiation stability of the French nuclear glass towards alpha decay accumulation. J. Nucl. Mater. 444, 76 (2014).CrossRefGoogle Scholar
Poon, M., Macaulany-Newcombe, R.G., Davis, J.W., and Haasz, A.A.: Flux dependence of deuterium retention in single crystal tungsten. J. Nucl. Mater. 307–311(Part 1), 723 (2002).CrossRefGoogle Scholar
Callisti, M., Karlik, M., and Polcar, T.: Bubbles formation in helium ion irradiated Cu/W multilayer nanocomposites: Effects on structure and mechanical properties. J. Nucl. Mater. 473, 18 (2016).CrossRefGoogle Scholar
Fréchard, S., Walls, M., Koiak, M., Chevallier, J.P., Henry, J., and Gorse, D.: Study by EELS of helium bubbles in a martensitic steel. J. Nucl. Mater. 393, 102 (2009).CrossRefGoogle Scholar
Prikhodko, K. and Emelyanova, O.: Using EELS analysis in STEM to investigate the helium content in irradiated materials. In European Microscopy Congress 2016 Proceedings (Wiley: Hoboken, NJ, 2016); session IM08-410, number 5844.Google Scholar
Bowden, M., Dixon, N.M., Gardiner, J.D., and Carter, S.F.: Raman microscope analysis of gaseous and solid inclusions in fluoride glass optical fibres. J. Mater. Sci.: Mater. Electron. 1, 34 (1990).Google Scholar
Wang, J-C., Guo, Q-B., Liu, X-F., Dai, Y., Wang, Z-Y., and Qiu, J-R.: Bubble generation in germanate glass induced by femtosecond laser. Chin. Phys. Lett. 33, 036101 (2016).CrossRefGoogle Scholar
Ollier, N., Champagnon, B., Boizot, B., Guyot, Y., Panczer, G., and Padlyak, B.: Influence of external β-irradiation in oxide glasses. J. non-Crst. Solids 323, 200 (2003).CrossRefGoogle Scholar
Cheng, S., Yang, G., Zhao, Y., Peng, M., Skibsted, J., and Yue, Y.: Quantification of the boron speciation in alkali borosilicate glasses by electron energy loss spectroscopy. Sci. Rep. 5, 17526 (2015).CrossRefGoogle ScholarPubMed
Mir, A.H., Monnet, I., Boizot, B., Jegou, C., and Peuget, S.: Electron and electron-ion sequential irradiation of borosilicate glasses: Impact of the pre-existing defects. J. Nucl. Mater. 4889, 91 (2017).CrossRefGoogle Scholar
Rose, P.B., Woodward, D.I., Ojovan, M.I., Hyatt, N.C., and Lee, W.E.: Crystallisation of a simulated borosilicate high-level waste glass produced on a full-scale vitrification line. J. Non-Cryst. Solids 357, 2989 (2011).CrossRefGoogle Scholar