Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T11:50:29.187Z Has data issue: false hasContentIssue false

Broad range adjustable emission of stacked SiNx/SiOy layers

Published online by Cambridge University Press:  31 January 2011

J. Barreto*
Affiliation:
Instituto de Microelectrónica de Barcelona, Centro Nacional de Microelectrónica, Consejo Superior de Investigaciones Científicas (IMB-CNM, CSIC), Bellaterra 08193, Barcelona, Spain
M. Perálvarez
Affiliation:
Enginyería i Materials Electrónics (EME), IN2UB, Departament d’Electrònica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
A. Morales
Affiliation:
Instituto de Microelectrónica de Barcelona, Centro Nacional de Microelectrónica, Consejo Superior de Investigaciones Científicas (IMB-CNM, CSIC), Bellaterra 08193, Barcelona, Spain
B. Garrido
Affiliation:
Enginyería i Materials Electrónics (EME), IN2UB, Departament d’Electrònica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
J. Montserrat
Affiliation:
Instituto de Microelectrónica de Barcelona, Centro Nacional de Microelectrónica, Consejo Superior de Investigaciones Científicas (IMB-CNM, CSIC), Bellaterra 08193, Barcelona, Spain
C. Domínguez
Affiliation:
Instituto de Microelectrónica de Barcelona, Centro Nacional de Microelectrónica, Consejo Superior de Investigaciones Científicas (IMB-CNM, CSIC), Bellaterra 08193, Barcelona, Spain
*
a)Address all correspondence to this author. e-mail: jorge.barreto@cnm.es
Get access

Abstract

Structures containing stacked layers of silicon-rich silicon nitride (green-blue luminescence) and oxide (red luminescence) fabricated by ion implantation are reported, and it is shown how a Si-based material can be engineered to emit over a broad range. To study in depth the emission from implanted SiNx matrices, single nitride layers have been also fabricated by the first time. Si excess variation and the relative thickness of nitride and oxide provide the intensity and position variation of the peaks, and thus open the way to engineer a stack with desired emission properties over the whole visible spectrum.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Iyer, S.S.Xie, Y.H.: Light-emission from silicon. Science 260(5104), 40 1993CrossRefGoogle ScholarPubMed
2Hirschman, K.D., Tsybeskov, L., Duttagupta, S.P.Fauchet, P.M.: Silicon-based visible light-emitting devices integrated into microelectronic circuits. Nature 384(6607), 338 1996CrossRefGoogle Scholar
3Pavesi, L., Negro, L. Dal, Mazzoleni, C., Franzo, G.Priolo, F.: Optical gain in silicon nanocrystals. Nature 408(6811), 440 2000CrossRefGoogle ScholarPubMed
4Augustine, B.H., Irene, E.A., He, Y.J., Price, K.J., McNeil, L.E., Christensen, K.N.Maher, D.M.: Visible-light emission from thin-films containing Si, O, N, and H. J. Appl. Phys. 78(6), 4020 1995CrossRefGoogle Scholar
5Canham, L.T.: Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57(10), 1046 1990CrossRefGoogle Scholar
6Price, K.J., Sharpe, L.R., McNeil, L.E.Irene, E.A.: Electroluminescence in silicon oxynitride films. J. Appl. Phys. 86(5), 2638 1999Google Scholar
7Park, N.M., Choi, C.J., Seong, T.Y.Park, S.J.: Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride. Phys. Rev. Lett. 86(7), 1355 2001CrossRefGoogle ScholarPubMed
8Chen, L.Y., Chen, W.H.Hong, F.C.N.: Visible electroluminescence from silicon nanocrystals embedded in amorphous silicon nitride matrix. Appl. Phys. Lett. 86(19), 193506 2005CrossRefGoogle Scholar
9Negro, L. Dal, Yi, J.H., Michel, J., Kimerling, L.C., Chang, T.W.F., Sukhovatkin, V.Sargent, E.H.: Light emission efficiency and dynamics in silicon-rich silicon nitride films. Appl. Phys. Lett. 88(23), 233109 2006CrossRefGoogle Scholar
10Takagahara, T.Takeda, K.: Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. Phys. Rev. B: Condens. Matter 46(23), 15578 1992CrossRefGoogle ScholarPubMed
11Wolkin, M.V., Jorne, J., Fauchet, P.M., Allan, G.Delerue, C.: Electronic states and luminescence in porous silicon quantum dots: The role of oxygen. Phys. Rev. Lett. 82(1), 197 1999CrossRefGoogle Scholar
12Daldosso, N., Luppi, M., Ossicini, S., Degoli, E., Magri, R., Dalba, G., Fornasini, P., Grisenti, R., Rocca, F., Pavesi, L.: Role of the interface region on the optoelectronic properties of silicon nanocrystals embedded in SiO2. Phys. Rev. B: Condens. Matter 68(8), 085327 2003CrossRefGoogle Scholar
13Garrido, B., Lopez, M., Gonzalez, O., Perez-Rodriguez, A., Morante, J.R.Bonafos, C.: Correlation between structural and optical properties of Si nanocrystals embedded in SiO2: The mechanism of visible light emission. Appl. Phys. Lett. 77(20), 3143 2000CrossRefGoogle Scholar
14Kim, T.W., Cho, C.H., Kim, B.H.Park, S.J.: Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using SiH4 and NH3. Appl. Phys. Lett. 88(12), 123102 2006CrossRefGoogle Scholar