Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T15:18:05.518Z Has data issue: false hasContentIssue false

Biomimetic structures for mechanical applications by interfering laser beams: More than solely holographic gratings

Published online by Cambridge University Press:  01 August 2006

Claus Daniel*
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Tennessee 37831-6063
*
a) Address all correspondence to this author.e-mail: danielc@ornl.gov
Get access

Abstract

A variety of biological materials composed of hierarchical phase composites can be found. These biological materials successfully combine impressive toughness with high stiffness and strength. Deposition techniques combined with high-power laser beams can imitate biological structures in technical systems. Interference phenomena, such as surface scattering, Lloyd's mirror arrangements, or interference of coherent beams, can be used to create these biomimetic long-range ordered structures on the scale of nanometers to micrometers. These structures are not limited to topographic texturing, as in the case of holographic gratings; rather, they can also create composite structures and phase transformations. This article presents a brief overview of interference techniques, their possibilities, and their limits.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Weiner, S., Traub, W., Wagner, H.D.: Lamellar bone: Structure–function relations. J. Struct. Biol. 126, 241 (1999).CrossRefGoogle ScholarPubMed
2.Weiner, S., Wagner, H.D.: The material bone: Structure– mechanical function relations. Annu. Rev. Mater. Sci. 28, 271 (1998).CrossRefGoogle Scholar
3.Jäger, I., Fratzl, P.: Mineralized collagen fibrils: A mechanical model with a staggered arrangement of mineral particles. Biophys. J. 79, 1737 (2000).CrossRefGoogle ScholarPubMed
4.Sarikaya, M., Liu, J., Aksay, I.A. Nacre: Properties, crystallography, morphology, and formation, in Biomimetics edited by Sarikaya, M. and Aksay, I.A. (AIP Press, Woodbury, NY, 1995), p. 35.Google Scholar
5.Lin, A., Mayers, M.A.: Growth and structure in abalone shell. Mater. Sci. Eng., A 390, 27 (2005).CrossRefGoogle Scholar
6.Meng, R., Meyers, M.H., Meyers, M.A., Vecchio, K.S.: Quasi-static and dynamic mechanical response of haliotis rufescens (abalone) shells. Acta Mater. 48, 2383 (2000).CrossRefGoogle Scholar
7.Carter, D.R., Hayes, W.: The compressive behavior of bone as a two-phase porous structure. J. Bone Joint Surg. 59A, 954 (1977).CrossRefGoogle Scholar
8.Currey, J.D.: The Mechanical Adaptations of Bones (Princeton Univ. Press, Princeton, NJ, 1984).CrossRefGoogle Scholar
9.Rho, J-Y., Kohun-Spearing, L., Zioupos, P.: Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 20, 92 (1998).CrossRefGoogle ScholarPubMed
10.Daniel, C., Balk, T.J., Wübben, T., Mücklich, F.: Bio-mimetic scaling of mechanical behavior of thin films, coatings, and surfaces by laser interference metallurgy. Adv. Eng. Mater. 7, 823 (2005).CrossRefGoogle Scholar
11.Daniel, C., Lasagni, A., and Mücklich, F.: Microstructure-mechanical properties relationship of laser interference irradiated Ni/Al multi-film, in Thin Films—Stresses and Mechanical Properties X, edited by Corcoran, S.G., Joo, Y-C., Moody, N.R., and Z. Suo. (Mater. Res. Soc. Symp. Proc. 795, Warrendale, PA, 2004), U10.4, p. 443.Google Scholar
12.Sivakov, V., Petersen, C., Daniel, C., Shen, H., Mücklich, F., Mathur, S.: Laser induced local and periodic phase transformation in iron oxide thin films obtained by chemical vapour deposition. Appl. Surf. Sci. 247, 513 (2005).CrossRefGoogle Scholar
13.Veith, M., Andres, K., Petersen, C., Daniel, C., Holzapfel, C., Mücklich, F.: Periodic micro-structuring of hidride containing metastable aluminiumoxide using laser interference metallurgy. Adv. Eng. Mater. 7, 27 (2005).CrossRefGoogle Scholar
14.Nix, W.D.: Mechanical properties of thin films. Metall. Trans. A 20A, 2217 (1989).CrossRefGoogle Scholar
15.Volinsky, A.A., Hauschildt, M., Vella, J.B., Edwards, N.V., Gregory, R., and Gerberich, W.W.: Residual stress and microstructure of electroplated Cu film on different barrier layers, in Thin Films: Stresses and Mechanical Properties IX edited by Ozkan, C.S., Freund, L.B., Cammarata, R.C., and Gao, H.. (Mater. Res. Soc. Symp. Proc. 695, Warrendale, PA, 2002), L1.11, p. 27.Google Scholar
16.von Allmen, M., Blatter, A.: Laser-Beam Interaction with Materials 2nd ed. (Springer, Berlin, Germany, 1995).CrossRefGoogle Scholar
17.Bäuerle, D.: Laser Processing and Chemistry 3rd ed. (Springer, Berlin, Germany, 2000).CrossRefGoogle Scholar
18.Daniel, C., Mücklich, F., Liu, Z.: Periodic micro-nano-structuring of metallic surfaces by interfering laser beams. Appl. Surf. Sci. 208–209, 317 (2003).CrossRefGoogle Scholar
19.Kelly, M.K., Rogg, J., Kataí, S.: High resolution thermal processing of semiconductors using pulsed-laser interference patterning. Phys. Status Solidi A 166, 651 (1998).3.0.CO;2-P>CrossRefGoogle Scholar
20.Guan, Y.F., Pedraza, A.J., Fowlkes, J.D., Joy, D.A.: Nanostructures produced by ultraviolet laser irradiation of silicon. II. Nanoprotrusions and nanoparticles. J. Vac. Sci. Technol., B 22, 2836 (2004).CrossRefGoogle Scholar
21.Guan, Y.F., Pedraza, A.J.: Synthesis of aligned nanoparticles on laser-generated templates. Nanotechnol. 16, 1612 (2005).CrossRefGoogle Scholar
22.Aichmayr, G., Toet, D., Mulato, M., Santos, P.V., Spangenberg, A., Christiansen, S., Albrecht, M., Strunk, H.P.: Lateral grain growth during the laser interference crystallization of a-Si. Phys. Status Solidi A 166, 659 (1998).3.0.CO;2-U>CrossRefGoogle Scholar
23.Andrä, G., Bergmann, J., Falk, F., Ose, E., Stafast, H.: Laser induced crystallization of amorphous silicon films on glass for thin film solar cells. Phys. Status Solidi A 166, 629 (1998).3.0.CO;2-5>CrossRefGoogle Scholar
24.Liu, Z-F., Meng, X.K., Recktenwald, T., Mücklich, F.: Patterned intermetallic reaction of Ni3Al by laser interference structuring. Mater. Sci. Eng., A 342, 101 (2003).CrossRefGoogle Scholar
25.Singh, A., Dahotre, N.B.: Laser in situ synthesis of mixed carbide coating on steel. J. Mater. Sci. 39, 4553 (2004).CrossRefGoogle Scholar
26.Nayak, S., Wang, H., Kenik, E.A., Anderson, I.M., Dahotre, N.B.: Observation of exothermic reaction during laser-assisted iron oxide coating on aluminum alloy. Mater. Sci. Eng., A 390, 404 (2005).CrossRefGoogle Scholar
27.Daniel, C., Mücklich, F.: Micro-structural characterization of laser interference irradiated Ni–Al multi-films. Appl. Surf. Sci. 242, 140 (2005).CrossRefGoogle Scholar
28.Kelly, M.K., Dahlheimer, B.: Extended resolution for lateral structuring with laser interference gratings using high-index input coupling. Phys. Status Solidi A 156, K13 (1996).CrossRefGoogle Scholar
29.Engleman, P.G., Kurella, A., Samant, A., Blue, C.A., Dahotre, N.B.: The application of laser-induced multi-scale surface texturing. JOM 57(12), 46 (2005).CrossRefGoogle Scholar
30.Ruf, A., Dausinger, F. Interaction with metals, in Femtosecond Technology for Technical and Medical Applications edited by Dausinger, F., Lichtner, F., and Lubatschowski, H. (Springer, Berlin, Germany, 2004), p. 105.CrossRefGoogle Scholar
31.Kawamura, K-I., Ito, N., Sarukura, N., Hirano, M., Hosono, H.: New adjustment technique for time coincidence of femtosecond laser pulses using third-harmonic generation in air and its application to holograph encoding system. Rev. Sci. Instrum. 73, 1711 (2002).CrossRefGoogle Scholar
32.Hirano, M., Kawamura, K-I., Hosono, H.: Encoding of holographic grating and periodic nano-structure by femtosecond laser pulse. Appl. Surf. Sci. 197–198, 688 (2002).CrossRefGoogle Scholar
33.Daniel, C., Lasagni, A., Mücklich, F.: Stress and texture evolution of Ni/Al multi-film by laser interference irradiation. Surf. Coat. Technol. 180–181, 478 (2004).CrossRefGoogle Scholar
34.Daniel, C., Mücklich, F.: Electrical behavior of periodically micro-structured Sn/CuSn-4 contacts under fretting conditions. Wear 257, 266 (2004).CrossRefGoogle Scholar