Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-10T08:33:24.694Z Has data issue: false hasContentIssue false

Bi-epitaxial grain boundaries in YBa2Cu3O7−x thin films prepared by pulsed laser deposition and pulsed organometallic beam epitaxy: Direct comparison of transport properties and grain boundary structure

Published online by Cambridge University Press:  31 January 2011

Boris Vuchic
Affiliation:
Materials Science Division and Science and Technology Center for Superconductivity, Argonne National Laboratory, Argonne, Illinois 60439
K. L. Merkle
Affiliation:
Materials Science Division and Science and Technology Center for Superconductivity, Argonne National Laboratory, Argonne, Illinois 60439
K. Char
Affiliation:
Conductus, Inc., 969 West Maude Avenue, Sunnyvale, California 94086
D. B. Buchholz
Affiliation:
Materials Science and Engineering Department, Northwestern University, Evanston, Illinois 60208
R. P. H. Chang
Affiliation:
Materials Science and Engineering Department, Northwestern University, Evanston, Illinois 60208
L. D. Marks
Affiliation:
Materials Science and Engineering Department, Northwestern University, Evanston, Illinois 60208
Get access

Abstract

A set of 45° [001] bi-epitaxial YB2Cu3O7−x thin film grain boundaries was studied to compare the effects of the microstructure on transport properties. The grain boundaries were made using two different deposition techniques: pulsed laser deposition (PLD) and pulsed organometallic beam epitaxy (POMBE). The transport properties were highly dependent on the specific growth conditions used, resulting in both fully resistive and superconducting grain boundaries. Subsequent microstructural analysis of the measured boundaries showed that both types (superconducting and resistive) meandered on the length scale of hundreds of nanometers. The major structural difference between the boundaries was at the atomic scale where the resistive boundary had a 1 nm wide disordered region. The direct correlation of microstructure to transport properties demonstrates the importance of the atomic scale structure in the resulting transport behavior.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dimos, D., Chaudhari, P., Mannhart, J., and LeGoues, F. K., Phys. Rev. Lett. 61, 219 (1988).CrossRefGoogle Scholar
2. Dimos, D., Chaudhari, P., and Mannhart, J., Phys. Rev. B 41, 4038 (1990).CrossRefGoogle Scholar
3. Ivanov, Z. G., Nilsson, P. Å., Winkler, D., Alarco, J. A., Claeson, T., Stepantsov, E. A., and Tzalenchuk, A. Y., Appl. Phys. Lett. 59, 3030 (1991).CrossRefGoogle Scholar
4. Eom, C. B., Marshall, A. F., Suzuki, Y., Boyer, B., Pease, R. F. W., and Geballe, T. H., Nature 353, 544 (1991).CrossRefGoogle Scholar
5. Babcock, S. E., Cai, X. Y., Kaiser, D. L., and Larbalestier, D. C., Nature 347, 167 (1990).CrossRefGoogle Scholar
6. Chan, S-W., Hwang, D.M., Ramesh, R., Sampere, S.M., Nazar, L., Gerhardt, R., and Pruna, P. in, AIP Conference Proceedings 200, High Tc Superconducting Thin Films, edited by Stockbauer, R. (1990), p. 172.Google Scholar
7. Daly, K. P., Dozier, W. D., Burch, J. F., Coons, S. B., Hu, R., Platt, C. E., and Simon, R. W., Appl. Phys. Lett. 58, 543 (1991).CrossRefGoogle Scholar
8. Jia, C. L., Kabius, B., Urban, K., Herrmann, K., Cui, G. J., Schubert, J., Zander, W., Braginski, A. I., and Heiden, C., Physica C 175, 543 (1991).CrossRefGoogle Scholar
9. Char, K., Colclough, M. S., Garrison, S. M., Newman, N., and Zaharchuk, G., Appl. Phys. Lett. 59, 733 (1991).CrossRefGoogle Scholar
10. Char, K., Colclough, M. S., Lee, L. P., and Zaharchuk, G., Appl. Phys. Lett. 59, 2177 (1991).CrossRefGoogle Scholar
11. Chew, N. G., Goodyear, S. W., Humphreys, R. G., Satchell, J. S., Edwards, J. A., and Keene, M. N., Appl. Phys. Lett. 60, 1516 (1992).CrossRefGoogle Scholar
12. Vuchic, B. V., Merkle, K. L., Dean, K. A., Buchholz, D. B., Chang, R. P. H., and Marks, L. D., Appl. Phys. Lett. 67, 1013 (1995).CrossRefGoogle Scholar
13. Vuchic, B. V., Merkle, K. L., Dean, K. A., Buchholz, D. B., Chang, R. P. H., and Marks, L. D., J. Appl. Phys. 77, 2591 (1995).CrossRefGoogle Scholar
14. Gross, R., in Grain Boundary Josephson Junctions in the High Temperature Superconductors, edited by Shinde, S. L. and Rudman, D. (Springer-Verlag, New York, 1992), p. 1.Google Scholar
15. Early, E. A., Steiner, R. L., Clark, A. F., and Char, K., Phys. Rev. B 50, 9409 (1994).CrossRefGoogle Scholar
16. Babcock, S. E., Cai, X. Y., Larbalestier, D. C., Shin, D. H., Zhang, N., Zhang, H., and Kaiser, D. L., Physica C (1994).Google Scholar
17. Alarco, J. A., Olsson, E., Ivanov, Z. G., Nilsson, P. A., Winkler, D., Stepantsov, E. A., and Tzalenchuk, A. Y., Ultramicroscopy 51, 239 (1993).CrossRefGoogle Scholar
18. Jia, C. L. and Urban, K., Interface Science 1, 291 (1993).Google Scholar
19. Traeholt, C., Wen, J. G., Zandbergen, H. W., Shen, Y., and Hilgenkamp, J. W. M., Physica C 230, 425 (1994).CrossRefGoogle Scholar
20. Rosner, S. J., Char, K., and Zaharchuk, G., Appl. Phys. Lett. 60, 1010 (1992).CrossRefGoogle Scholar
21. Browning, N. D., Chisholm, M. F., and Pennycook, S. J., Interface Science 1, 309 (1993).Google Scholar
22. Dravid, V. P., Zhang, H., and Wang, Y. Y., Physica C 213, 353 (1993).CrossRefGoogle Scholar
23. Buchholz, D. B., Duray, S. J., Schulz, D. L., Marks, T. J., Ketterson, J. B., and Chang, R. P. H., Mater. Chem. Phys. 36, 377 (1994).CrossRefGoogle Scholar
24. Gross, R., Chaudhari, P., Dimos, D., Gupta, A., and Koren, G., Phys. Rev. Lett. 64, 228 (1990).CrossRefGoogle Scholar
25. Liu, L., Nowak, E. R., Jaeger, H. M., Vuchic, B. V., Merkle, K. L., Buchholz, D. B., and Chang, R. P. H., Phys. Rev. B 51, 16164 (1995).CrossRefGoogle Scholar
26. Miller, D. J., Roberts, T. A., Kang, J.H., Talvacchio, J., Buchholz, D. B., and Chang, R. P. H., Appl. Phys. Lett. 66, 2561 (1995).CrossRefGoogle Scholar
27. Streiffer, S. K., Zielinski, E. M., Lairson, B. M., and Bravman, J. C., Appl. Phys. Lett. 58, 2171 (1991).CrossRefGoogle Scholar
28. Shin, D. H., Silcox, J., Lathrop, D. K., Russek, S. E., and Buhrman, R. A., in The Proceedings of the Electron Microscopy Society of America, edited by Bailey, G. W. (1989), p. 174.Google Scholar
29. Vuchic, B. V., Merkle, K. L., Funkhouser, J. W., Buchholz, D. B., Dean, K. A., Chang, R. P. H., and Marks, L. D., IEEE Trans. Appl. Superconductivity 5, 1225 (1995).CrossRefGoogle Scholar
30. Vuchic, B. V., Marks, L. D., and Merkle, K. L., unpublished.Google Scholar