Published online by Cambridge University Press: 31 January 2011
Ion beam nitridation (IBN) of GaAs at room temperature was studied as a function of N2+ ion incident angle at ion energy of 10 keV. The ion beam bombardment surface area of GaAs was characterized in situ by both Auger electron spectroscopy (AES) and small spot-size x-ray photoelectron spectroscopy (XPS). Thin GaN reaction layers are formed at all N2+ ion incident angles, whereas the formation of As–N bonds has not been found. However, the degree of nitridation of Ga decreases with increasing incident angle. The observed angular dependence of the N incorporation can be explained in terms of sputtering yield, indicating that the growth kinetics can be described as a dynamic process comprising the accumulation of N and sputter removal of the surface layer. N2+ ion bombardment causes the depletion of As from the surface region because of the preferential sputtering of As from GaAs. The preferential sputtering of As reduces with increasing N2+ ion incident angle. The angular dependent behavior of preferential sputtering of As by 10 keV N2+ ions can be attributed to the angular dependence of GaN surface layer formation.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.