Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T23:51:24.205Z Has data issue: false hasContentIssue false

Atomic-scale simulations of multiple ion–solid interactions and structural evolution in silicon carbide

Published online by Cambridge University Press:  31 January 2011

F. Gao*
Affiliation:
Pacific Northwest National Laboratory, MS K8–93, P.O. Box 999, Richland, Washington 99352
W. J. Weber
Affiliation:
Pacific Northwest National Laboratory, MS K8–93, P.O. Box 999, Richland, Washington 99352
*
a) Address all correspondence to this author. e-mail: fei.gao@pnl.gov
Get access

Abstract

Molecular dynamics (MD) were employed in atomic-level simulations of fundamental damage production processes due to multiple ion–solid collision events in cubic SiC. Isolated collision cascades produce single interstitials, vacancies, antisite defects, and small defect clusters. As the number of cascades (or equivalent dose) increases, the concentration of defects increases, and the collision cascades begin to overlap. The coalescence of defects and clusters with increasing dose is an important mechanism leading to amorphization in SiC and is consistent with the homogeneous amorphization process observed experimentally in SiC. The driving force for the crystalline– amorphous (c–a) transition is the accumulation of both interstitials and antisite defects. High-resolution transmission electron microscopy (HRTEM) images of the defect accumulation process and loss of long-range order in the MD simulation cell are consistent with experimental HRTEM images and disorder measurements. Thus, the MD simulations provide atomic-level insights into the interpretation of experimentally observed features associated with multiple ion–solid collision events in SiC.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Wesch, W., Nucl. Instrum. Methods B 116, 305 (1996).CrossRefGoogle Scholar
2.Weber, W.J., Ewing, R.C., Catlow, C.R.A., Rubia, T. Diaz de la, Hobbs, L.W., Kinoshita, C., Matzke, Aj., Motta, A.T., Nastasi, M., Salje, E.K.H., Vance, E.R., and Zinkle, S.J., J. Mater. Res. 13, 1434 (1998).CrossRefGoogle Scholar
3.Wendler, E., Heft, A., Wesch, W., Nucl. Instrum. Methods B 141, 105 (1998).CrossRefGoogle Scholar
4.Weber, W.J., Yu, N., Wang, L.M., and Hess, N.J., Mater. Sci. Eng. A 253, 62 (1998).CrossRefGoogle Scholar
5.Zinkle, S.J. and Snead, L.L., Nucl. Instrum. Methods B 116, 92 (1996).CrossRefGoogle Scholar
6.Weber, W.J., Yu, N., and Wang, L.M., J. Nucl. Mater. 253, 53 (1998).CrossRefGoogle Scholar
7.Inui, H., Mori, H., and Fujita, H., Philos. Mag. B 61, 107 (1990).CrossRefGoogle Scholar
8.Inui, H., Mori, H., and Sakata, T., Philos. Mag. B 66, 737 (1992).CrossRefGoogle Scholar
9.Wang, L.M., Nucl. Instrum. Methods B 141, 312 (1998).CrossRefGoogle Scholar
10.Wang, L.M. and Weber, W.J., Philos. Mag. A 79, 237 (1999).CrossRefGoogle Scholar
11.Weber, W.J., Nucl. Instrum. Methods B 166–167, 98 (2000).CrossRefGoogle Scholar
12.Devanathan, R., Weber, W.J., and Gao, F., J. Appl. Phys. 90, 2303 (2001).CrossRefGoogle Scholar
13.Devanathan, R., Weber, W.J., and Rubia, T. Diaz de la, Nucl. Instrum. Methods B 141, 118 (1998).CrossRefGoogle Scholar
14.Gao, F., Bylaska, E.J., Weber, W.J., and Corrales, L.R., Nucl. Instrum. Methods B 180, 286 (2001).CrossRefGoogle Scholar
15.Devanathan, R. and Weber, W.J., J. Nucl. Mater. 278, 258 (2000).CrossRefGoogle Scholar
16.Gao, F. and Weber, W.J., J. Appl. Phys. 89, 4275 (2001).CrossRefGoogle Scholar
17.Gao, F., Weber, W.J., and Jiang, W., Phys. Rev. B 63, 214106 (2001).CrossRefGoogle Scholar
18.Weber, W.J. and Wang, L.M., Nucl. Instrum. Methods B 106, 298 (1995).CrossRefGoogle Scholar
19.Bolse, W., Nucl. Instrum. Methods B 141, 133 (1998).CrossRefGoogle Scholar
20.Hobbs, L.W., Sreeram, A.N., Jesurum, C.E., and Berger, B.A., Nucl. Instrum. Methods B 116, 18 (1996).CrossRefGoogle Scholar
21.Kilaas, R., NCEM HRTEM Image Simulation Software, National Center for Electron Microscopy, Lawrence Berkeley Laboratory, Berkley, CA.Google Scholar
22.Melerba, L. and Perlado, J.M., J. Nucl Mater. 289, 57 (2001).CrossRefGoogle Scholar