Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T22:27:46.721Z Has data issue: false hasContentIssue false

Atmospheric pressure chemical vapor deposition of TiN from tetrakis(dimethylamido)titanium and ammonia

Published online by Cambridge University Press:  31 January 2011

Joshua N. Musher
Affiliation:
Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138
Roy G. Gordon
Affiliation:
Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138
Get access

Abstract

Near stoichiometric titanium nitride (TiN) was deposited from tetrakis(dimethylamido)titanium (TDMAT) and ammonia using atmospheric pressure chemical vapor deposition. Experiments were conducted in a belt furnace; static experiments provided kinetic data and continuous operation uniformly coated 150-mm substrates. Growth rate, stoichiometry, and resistivity are examined as functions of deposition temperature (190−420 °C), ammonia flow relative to TDMAT (0−30), and total gas-flow rate (residence time 0.3−0.6 s). Films were characterized by sheet resistance measurements, Rutherford Backscattering Spectrometry, and X-Ray Photoelectron Spectrometry. Films deposited without ammonia were substoichiometric (N/Ti, 0.6−0.75), contained high levels of carbon (C/Ti = 0.25−0.40) and oxygen (O/Ti = 0.6−0.9), and grew slowly. Small amounts of ammonia (NH3/TDMAT ≥ 1) brought impurity levels down to C/Ti, 0.1 and O/Ti = 0.3−0.5. Ammonia increased the growth rates by a factor of 4−12 at temperatures below 400 °C. Films 500 Å thick had resistivities as low as 1600 μΩ-cm when deposited at 280 °C and 1500 μΩ-cm when deposited at 370 °C. Scanning electron micrographs indicate a smooth surface and poor step coverage for films deposited with high ammonia concentrations.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kurtz, S. R. and Gordon, R. G., Thin Solid Films 140, 277 (1986).CrossRefGoogle Scholar
2.Tsai, W., Fair, J., and Hodul, D., in Advanced Metallization and Processing for Semiconductor Devices and Circuits II, edited by Katz, A., Murarka, S. P., Nissim, Y. I., and Harper, J. M. E. (Mater. Res. Soc. Symp. Proc. 260, Pittsburgh, PA, 1993), p. 793.Google Scholar
3.Inoue, Y., Tanimoto, S., Tsujimura, K., Yamashita, T., Ibara, Y., Yamashita, Y., and Yoneda, K., J. Electrochem. Soc. 141 (4), 1056 (1994).CrossRefGoogle Scholar
4.Tsai, W., Delfino, M., Fair, J. A., and Hodul, D., J. Appl. Phys. 73 (9), 4462 (1993).CrossRefGoogle Scholar
5.Mandl, M., Hoffman, H., and Kucher, P., J. Appl. Phys. 68 (5), 2127 (1990).CrossRefGoogle Scholar
6.Musher, J. N. and Gordon, R. G., J. Electronic Mater. 20, 1105 (1991).CrossRefGoogle Scholar
7.Raaijmakers, I. J., Vrtis, R. N., Yang, J., Ramaswami, S., Lagendijk, A., Roberts, D. A., and Broadbent, E. K., in Advanced Metallization and Processing for Semiconductor Devices and Circuits II, edited by Katz, A., Murarka, S. P., Nissim, Y. I., and Harper, J. M. E. (Mater. Res. Soc. Symp. Proc. 260, Pittsburgh, PA, 1993), p. 99.Google Scholar
8.Chiang, S., Hendel, R., and Zhang, F., in Advanced Metallization and Processing for Semiconductor Devices and Circuits II, edited by Katz, A., Murarka, S. P., Nissim, Y. I., and Harper, J. M. E. (Mater. Res. Soc. Symp. Proc. 260, Pittsburgh, PA, 1993), p. 813.Google Scholar
9.Price, J. B., Borland, J. O., and Selbrede, S., Thin Solid Films 236, 311 (1993).CrossRefGoogle Scholar
10.Bradley, D. C. and Thomas, I.M., J. Chem. Soc., 3857 (1960).CrossRefGoogle Scholar
11.Fix, R. M., Gordon, R.G., and Hoffman, D.M., Chem. Mater. 2, 235 (1990).CrossRefGoogle Scholar
12.Fix, R. M., Gordon, R.G., and Hoffman, D.M., Chem. Mater. 3, 1138 (1991).CrossRefGoogle Scholar
13.Fix, R. M., Gordon, R.G., and Hoffman, D.M., in Chemical Vapor Deposition of Refractory Metals and Ceramics, edited by Besmann, T. M. and Gallois, B. M. (Mater. Res. Soc. Symp. Proc. 168, Pittsburgh, PA, 1990), p. 357.Google Scholar
14.Roberts, D., Schumacher Corporation, private communication.Google Scholar
15.L'ecuyer, J., Davies, J.A., and Matsunami, N., Nucl. Instrum. Methods 160, 337 (1979).CrossRefGoogle Scholar
16.Cohen, C., Davies, J.A., Drigo, A. V., and Jackman, T. E., Nucl. Instrum. Methods in Phys. Res. 218, 147 (1983).CrossRefGoogle Scholar
17.Chu, W-K., Mayer, J.W., and Micolet, M. A., Backscattering Spectrometry (Academic Press, Orlando, FL, 1978).CrossRefGoogle Scholar
18.Feldman, L. C. and Meyer, J. W., Fundamentals of Surface and Thin Film Analysis (Elsevier Science Publishers, Amsterdam, 1986).Google Scholar
19.Turos, A. and Meyer, O., Nucl. Instrum. Methods in Phys. Res. B4, 92 (1984).CrossRefGoogle Scholar
20.Huang, T. C., Gilles, R., and Will, G., Thin Solid Films 230, 99 (1993).CrossRefGoogle Scholar
21.Goldman, L. M. and Wu, D.T., private communication.Google Scholar
22.Raaijmakers, I. J.et al., Thin Solid Films 247, 85 (1994).CrossRefGoogle Scholar
23.Raaijmakers, I. J., Vrtis, R. N., Sandhu, G. S., Yang, J., Broadbent, E. K., Roberts, D. A., and Lagendijk, A., Proc. 9th Int. IEEE VLSI Multilevel Interconnection Conference (IEEE, New York, 1992).Google Scholar
24.Raaijmakers, I. J., Yang, J., Fissel, M. G., and Levy, K. B., SEMI Technology Symposium (Semicon, Japan, December, 1992).Google Scholar
25.Chowdhury, R., Chen, X., and Narayan, J., Appl. Phys. Lett. 64 (10), 1236 (1994).CrossRefGoogle Scholar
26.Katz, A., Feingold, A., Nakahara, S., Pearton, S. J., Lane, E., Geva, M., Stevie, F. A., and Jones, K., J. Appl. Phys. 71 (2), 993 (1992).CrossRefGoogle Scholar
27.Weber, A., Nikulski, R., Klages, C-P., Gross, M. E., Brown, W. L., Dons, E., and Charatan, R. M., J. Electrochem. Soc. 141 (3), 849 (1994).CrossRefGoogle Scholar
28.Dicit, G. A., Wei, C. C., Liou, F. T., and Zhang, H., Appl. Phys. Lett. 62, 357 (1993).CrossRefGoogle Scholar
29.Pang, Z., Boumerzoug, M., Kruzelecky, R. V., Mascher, P., Simmons, J. G., and Thompson, D. A., J. Vac. Sci. Technol. A 12 (1), 83 (1994).CrossRefGoogle Scholar
30.Dubois, L. H., Zergarski, B. R., and Girolami, G., J. Electrochem. Soc. 139 (12), 3603 (1992).CrossRefGoogle Scholar
31.Prybyla, J. A., Chiang, C-M., and Dubois, L., J. Electrochem. Soc. 140 (9), 2695 (1993).CrossRefGoogle Scholar
32.Prybyla, J. A., Chiang, C-M., and Dubois, L., in Chemical Perspectives of Microelectronic Materials III, edited by Abernathy, C. R., Bates, C. W., Bohling, D. A., and Hobson, W. S. (Mater. Res. Soc. Symp. Proc. 282, Pittsburgh, PA, 1993), p. 287.Google Scholar
33.Weiller, B. H. and Partido, B. V., Chem. Mat. 6 (3), 260 (1994).CrossRefGoogle Scholar
34.Sun, S. C. and Tsai, M. H., Thin Solid Films 253, 440 (1994).CrossRefGoogle Scholar
35.Sandhu, G., Meikle, S. G., and Doan, T. T., Appl. Phys. Lett. 62 (3), 240 (1993).CrossRefGoogle Scholar
36.Musher, J. N. and Gordon, R. G., J. Electrochem. Soc. 143, 736 (1996).CrossRefGoogle Scholar