Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T10:43:57.581Z Has data issue: false hasContentIssue false

Annealing effects on the elastic modulus of tungsten oxide nanowires

Published online by Cambridge University Press:  31 January 2011

Yanwu Zhu
Affiliation:
NUS Nanoscience & Nanotechnology Initiative, National University of Singapore, Singapore 117576, Singapore
Yousheng Zhang
Affiliation:
NUS Nanoscience & Nanotechnology Initiative, National University of Singapore, Singapore 117576, Singapore
Fook-Chiong Cheong
Affiliation:
Department of Physics, National University of Singapore, Singapore 117542, Singapore
Chorng-Haur Sow*
Affiliation:
Department of Physics and NUS Nanoscience & Nanotechnology Initiative, National University of Singapore, Singapore 117542, Singapore
Chwee-Teck Lim
Affiliation:
Division of Bioengineering & Department of Mechanical Engineering and NUS Nanoscience & Nanotechnology Initiative, National University of Singapore, Singapore 117576, Singapore
*
a)Address all correspondence to these authors: a) e-mail: physowch@nus.edu.sg
Get access

Abstract

Three-point bend test coupled with transmission electron microscopy (TEM) analysis was carried out on individual tungsten oxide nanowires (NWs) before and after annealing. Three-point bend test monitors the change in the Young’s modulus of the NW after annealing, while TEM provides nanostructural detail changes on the same NW. In this way, insight into the correlation between the mechanical properties of a NW and its nanostructure details can be obtained. Annealing increased the diameter of the NWs by forming a uniform amorphous/polycrystalline outer coating. The coating results in a decrease in Young’s moduli for thicker NWs. On the other hand, annealing led to increased Young’s moduli of thinner NWs, which is attributed to the improved crystallinity in these NWs after annealing. This study points to a more refined strategy for more in-depth understanding of the relationship between the nanostructures and elastic mechanical properties of NWs.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Wang, Z.L.: Nanowires and Nanobelts—Materials, Properties and Devices Kluwer Academic Publisher Norwell, MA 2003Google Scholar
2He, R.Yang, P.: Giant piezoresistance effect in silicon nanowires. Nat. Nanotechnol. 1, 42 2006CrossRefGoogle ScholarPubMed
3Wong, E.W., Sheehan, P.E.Lieber, C.M.: Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971 1997CrossRefGoogle Scholar
4Song, J.H., Wang, X.D., Riedo, E.Wang, Z.L.: Elastic property of vertically aligned nanowires. Nano Lett. 5, 1954 2005CrossRefGoogle ScholarPubMed
5Wu, B., Heidelberg, A.Boland, J.J.: Mechanical properties of ultrahigh-strength gold nanowires. Nat. Mater. 4, 525 2005CrossRefGoogle ScholarPubMed
6Wu, B., Heidelberg, A., Boland, J.J., Sader, J.E., Sun, X.Li, Y.: Microstructure-hardened silver nanowires. Nano Lett. 6, 468 2006CrossRefGoogle ScholarPubMed
7Ni, H., Li, X.Gao, H.: Elastic modulus of amorphous SiO2 nanowires. Appl. Phys. Lett. 88, 043108 2006CrossRefGoogle Scholar
8Xiong, Q., Duarte, N., Tadigadapa, S.Eklund, P.C.: Force-deflection spectroscopy: A new method to determine the Young’s modulus of nanofilaments. Nano Lett. 6, 1904 2006CrossRefGoogle ScholarPubMed
9Li, X., Wang, X., Xiong, Q.Eklund, P.C.: Mechanical properties of ZnS nanobelts. Nano Lett. 5, 1982 2005CrossRefGoogle ScholarPubMed
10Lucas, M., Mai, W., Yang, R., Wang, Z.L.Riedo, E.: Aspect ratio dependence of the elastic properties of ZnO nanobelts. Nano Lett. 7, 1314 2007CrossRefGoogle ScholarPubMed
11Nam, C.Y., Jaroenapibal, P., Tham, D., Luzzi, D.E., Evoy, S.Fischer, J.E.: Diameter-dependent electromechanical properties of GaN nanowires. Nano Lett. 6, 153 2006CrossRefGoogle ScholarPubMed
12Chen, C.Q., Shi, Y., Zhang, Y.S., Zhu, J.Yan, Y.J.: Size dependence of Young’s modulus in ZnO nanowires. Phys. Rev. Lett. 96, 075505 2006CrossRefGoogle ScholarPubMed
13Liu, K.H., Wang, W.L., Xu, Z., Liao, L., Bai, X.D.Wang, E.G.: In situ probing mechanical properties of individual tungsten oxide nanowires directly grown on tungsten tips inside transmission electron microscope. Appl. Phys. Lett. 89, 221908 2006CrossRefGoogle Scholar
14Tan, E.P.S., Goh, C.N., Sow, C.H.Lim, C.T.: Tensile test of a single nanofiber using an atomic force microscope tip. Appl. Phys. Lett. 86, 073115 2005CrossRefGoogle Scholar
15Kaplan-Ashiri, I., Cohen, S.R., Gartsman, K., Ivanovskaya, V., Heine, T., Seifert, G., Wiesel, I., Wagner, H.D.Tenne, R.: On the mechanical behavior of WS2 nanotubes under axial tension and compression. Proc. Nat. Acad. Sci. USA 103, 523 2006CrossRefGoogle ScholarPubMed
16Cuenot, S., Fretigny, C., Demoustier-Champagne, S.Nysten, B.: Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Phys. Rev. B 69, 165410 2004CrossRefGoogle Scholar
17Lee, S-H., Deshpande, R., Parilla, P.A., Jones, K.M., To, B., Mahan, A.H.Dillon, A.C.: Crystalline WO3 nanoparticles for highly improved electrochromic applications. Adv. Mater. 18, 763 2006CrossRefGoogle Scholar
18Polleux, J., Gurlo, A., Barsan, N., Weimar, U., Antonietti, M.Niederberger, M.: Template-free synthesis and assembly of single-crystalline tungsten oxide nanowires and their gas-sensing properties. Angew. Chem. Int. Ed. 45, 261 2006CrossRefGoogle Scholar
19Bock, C.MacDougall, B.: The electrochemical oxidation of organics using tungsten oxide based electrodes. Electrochem. Acta 47, 3361 2002CrossRefGoogle Scholar
20Xiao, Z., Zhang, L., Tian, X.Fang, X.: Fabrication and structural characterization of porous tungsten oxide nanowires. Nanotechnology 16, 2647 2005CrossRefGoogle Scholar
21Li, Y., Bando, Y.Golberg, D.: Quasi-aligned single-crystalline W18O49 nanotubes and nanowires. Adv. Mater. 15, 1294 2003CrossRefGoogle Scholar
22Klinke, C., Hannon, J.B., Gignac, L., Reuter, K.Avouris, Ph.: Tungsten oxide nanowire growth by chemically induced strain. J. Phys. Chem. B 109, 17787 2005CrossRefGoogle ScholarPubMed
23Gu, G., Zheng, B., Han, W.Q., Roth, S.Liu, J.: Tungsten oxide nanotubes on tungsten substrates. Nano Lett. 2, 849 2002CrossRefGoogle Scholar
24Zhou, J., Gong, L., Deng, S.Z., Chen, J., She, J.C., Xu, N.S., Yang, R.Wang, Z.L.: Growth and field-emission property of tungsten oxide nanotip arrays. Appl. Phys. Lett. 87, 223108 2005CrossRefGoogle Scholar
25Cheong, F.C., Varghese, B., Zhu, Y.W., Teo, C.H., Tan, E.P.S., Dai, L., Tan, V.B.C., Lim, C.T.Sow, C.H.: WO3−x nanorods synthesized on a thermal hot plate. J. Phys. Chem. C 111, 17193 2007CrossRefGoogle Scholar
26Lim, K.Y., Sow, C.H., Lin, J., Cheong, F.C., Shen, Z.X., Thong, J.T.L., Chin, K.C.Wee, A.T.S.: Laser pruning of carbon nanotubes as a route to static and movable structures. Adv. Mater. 15, 300 2003CrossRefGoogle Scholar
27JCPDS No. 43-1035 International Center for Diffraction Data Newton Square, PAGoogle Scholar
28Zhou, J., Ding, Y., Deng, S.Z., Gong, L., Xu, N.S.Wang, Z.L.: Three-dimensional tungsten oxide nanowire networks. Adv. Mater. 17, 2107 2005CrossRefGoogle Scholar
29Gere, J.M.Timoshenko, S.P.: Mechanics of Materials PWS Pub Co. Boston, MA 1997Google Scholar
30Willis, B.T.M.: An optical method of studying the diffraction from imperfect crystals. III. Layer structures with stacking faults. Proc. R. Soc. London, Ser. A 248, 183 1958Google Scholar
31Lu, D.Y., Chen, J., Chen, H.J., Gong, L., Deng, S.Z., Xu, N.S.Liu, Y.L.: Raman study of thermochromic phase transition in tungsten trioxide nanowires. Appl. Phys. Lett. 90, 041919 2007CrossRefGoogle Scholar
32Pol, S.V., Pol, V.G., Kessler, V.G., Seisenbaeva, G.A., Solovyov, L.A.Gedanken, A.: Synthesis of WO3 nanorods by reacting WO(OMe)(4) under autogenic pressure at elevated temperature followed by annealing. Inorg. Chem. 44, 9938 2005CrossRefGoogle Scholar
33Shir, D., Liu, B.Z., Mohammad, A.M., Lew, K.K.Mohney, S.E.: Oxidation of silicon nanowires. J. Vac. Sci. Technol., B 24, 1333 2006CrossRefGoogle Scholar
34Lugovskaya, L.A., Aleshina, L.A., Kalibaeva, G.M.Fofanov, A.D.: X-ray study and structure simulation of amorphous tungsten oxide. Acta Crystallogr. B 58, 576 2002CrossRefGoogle ScholarPubMed
35Li, X.L., Liu, J.F.Li, Y.D.: Large-scale synthesis of tungsten oxide nanowires with high aspect ratio. Inorg. Chem. 42, 921 2003CrossRefGoogle ScholarPubMed
36Tan, E.P.S., Zhu, Y., Yu, T., Dai, L., Sow, C.H., Tan, V.B.C.Lim, C.T.: Crystallinity and surface effects on Young’s modulus of CuO nanowires. Appl. Phys. Lett. 90, 163112 2007CrossRefGoogle Scholar
37Jing, G.Y., Duan, H.L., Sun, X.M., Zhang, Z.S., Xu, J., Li, Y.D., Wang, J.X.Yu, D.P.: Surface effects on elastic properties of silver nanowires: Contact atomic-force microscopy. Phys. Rev. B 73, 235409 2006CrossRefGoogle Scholar