Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T23:53:28.676Z Has data issue: false hasContentIssue false

An in situ phosphorus source for the synthesis of Cu3P and the subsequent conversion to Cu3PS4 nanoparticle clusters

Published online by Cambridge University Press:  13 November 2015

Erik J. Sheets
Affiliation:
School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
Wei-Chang Yang
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA
Robert B. Balow
Affiliation:
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
Yunjie Wang
Affiliation:
School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
Bryce C. Walker
Affiliation:
School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
Eric A. Stach
Affiliation:
Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
Rakesh Agrawal*
Affiliation:
School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
*
a) Address all correspondence to this author. e-mail: agrawalr@purdue.edu
Get access

Abstract

The search for alternative earth abundant semiconducting nanocrystals for sustainable energy applications has brought forth the need for nanoscale syntheses beyond bulk synthesis routes. Of particular interest are metal phosphides and derivative I–V–VI chalcogenides including copper phosphide (Cu3P) and copper thiophosphate (Cu3PS4). Herein, we report a one-pot, solution-based synthesis of Cu3P nanocrystals utilizing an in situ phosphorus source: phosphorus pentasulfide (P2S5) in trioctylphosphine. By injecting this phosphorus source into a copper solution in oleylamine, uniform and size controlled Cu3P nanocrystals with a phosphorous-rich surface are synthesized. The subsequent reaction of the Cu3P nanocrystals with decomposing thiourea forms nanoscale Cu3PS4 particles having p-type conductivity and an effective optical band gap of 2.36 eV. The synthesized Cu3PS4 produces a cathodic photocurrent during photoelectrochemical measurements, demonstrating its application as a light-absorbing material. Our process creates opportunities to explore other solution-based metal-phosphorus systems and their subsequent sulfurization for earth abundant, alternative energy materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brock, S.L. and Senevirathne, K.: Recent developments in synthetic approaches to transition metal phosphide nanoparticles for magnetic and catalytic applications. J. Solid State Chem. 181, 15521559 (2008).CrossRefGoogle Scholar
Oyama, S.T., Gott, T., Zhao, H., and Lee, Y-K.: Transition metal phosphide hydroprocessing catalysts: A review. Catal. Today 143, 94107 (2009).CrossRefGoogle Scholar
Wang, J., Yang, Q., Zhang, Z., Li, T., and Zhang, S.: Synthesis of InP nanofibers from tri(m-tolyl)phosphine: An alternative route to metal phosphide nanostructures. Dalton Trans. 39, 227233 (2010).CrossRefGoogle Scholar
Pfeiffer, H., Tancret, F., and Brousse, T.: Synthesis, characterization and electrochemical properties of copper phosphide (Cu3P) thick films prepared by solid-state reaction at low temperature: A probable anode for lithium ion batteries. Electrochim. Acta, 50, 47634770 (2005).CrossRefGoogle Scholar
Stan, M.C., Klöpsch, R., Bhaskar, A., Li, J., Passerini, S., and Winter, M.: Cu3P binary phosphide: Synthesis via a wet mechanochemical method and electrochemical behavior as negative electrode material for lithium-ion batteries. Adv. Energy Mater. 3, 231238 (2013).CrossRefGoogle Scholar
Villevieille, C., Robert, F., Taberna, P.L., Bazin, L., Simon, P., and Monconduit, L.: The good reactivity of lithium with nanostructured copper phosphide. J. Mater. Chem. 18, 5956 (2008).CrossRefGoogle Scholar
Aitken, J.A., Ganzha-Hazen, V., and Brock, S.L.: Solvothermal syntheses of Cu3P via reactions of amorphous red phosphorus with a variety of copper sources. J. Solid State Chem. 178, 970975 (2005).CrossRefGoogle Scholar
Xie, Y., Su, H.L., Qian, X.F., Liu, X.M., and Qian, Y.T.: A mild one-step solvothermal route to metal phosphides (metal = Co, Ni, Cu). J. Solid State Chem. 91, 8891 (2000).CrossRefGoogle Scholar
Carenco, S., Hu, Y., Florea, I., Ersen, O., Boissie, C., Me, N., and Sanchez, C.: Metal-dependent interplay between crystallization and phosphorus diffusion during the synthesis of metal phosphide nanoparticles. Chem. Mater. 24, 41344145 (2012).CrossRefGoogle Scholar
Park, J., Koo, B., Yoon, K.Y., Hwang, Y., Kang, M., Park, J-G., and Hyeon, T.: Generalized synthesis of metal phosphide nanorods via thermal decomposition of continuously delivered metal-phosphine complexes using a syringe pump. J. Am. Chem. Soc. 127, 84338440 (2005).CrossRefGoogle ScholarPubMed
Henkes, A.E., Vasquez, Y., and Schaak, R.E.: Converting metals into phosphides: a general strategy for the synthesis of metal phosphide nanocrystals. J. Am. Chem. Soc. 129, 18961897 (2007).CrossRefGoogle ScholarPubMed
Henkes, A.E. and Schaak, R.E.: A general phosphorus source for the low-temperature conversion of metals into metal phosphides. Chem. Mater. 19, 42344242 (2007).CrossRefGoogle Scholar
De Trizio, L., Figuerola, A., Manna, L., Genovese, A., George, C., Brescia, R., Saghi, Z., Simonutti, R., Van Huis, M., and Falqui, A.: Size tunable, hexagonal plate-like Cu3P and Janus-like Cu-Cu3P nanocrystals. ACS Nano 6, 3241 (2012).CrossRefGoogle ScholarPubMed
Itthibenchapong, V., Kokenyesi, R.S., Ritenour, A.J., Zakharov, L.N., Boettcher, S.W., Wager, J.F., and Keszler, D.A.: Earth-abundant Cu-based chalcogenide semiconductors as photovoltaic absorbers. J. Mater. Chem. C 1, 657 (2013).CrossRefGoogle Scholar
Yu, L., Kokenyesi, R.S., Keszler, D.A., and Zunger, A.: Inverse design of high absorption thin-film photovoltaic materials. Adv. Energy Mater. 3, 4348 (2013).CrossRefGoogle Scholar
Foster, D.H., Jieratum, V., Kykyneshi, R., Keszler, D.A., and Schneider, G.: Electronic and optical properties of potential solar absorber Cu3PSe4 . Appl. Phys. Lett. 99, 181903 (2011).CrossRefGoogle Scholar
Balow, R.B., Sheets, E.J., Abu-Omar, M.M., and Agrawal, R.: Synthesis and characterization of copper arsenic sulfide nanocrystals from earth abundant elements for solar energy conversion. Chem. Mater. 27, 22902293 (2015).CrossRefGoogle Scholar
Nitsche, R. and Wild, P.: Crystal growth of metal-phosphorus-sulfur compounds by vapor transport. Mater. Res. Bull. 5, 419423 (1970).CrossRefGoogle Scholar
Marzik, J.V., Hsieh, A.K., Dwight, K., and Wold, A.: Photoelectronic properties of Cu3PS4 and Cu3PS3Se single crystals. J. Solid State Chem. 49, 4350 (1983).CrossRefGoogle Scholar
Blachnik, R., Gather, B., and Andrae, E.: Ternary chalcogenide systems: the Quasiternary System Ag2S-Cu2S-P4S10 . J. Therm. Anal. 37, 12891298 (1991).CrossRefGoogle Scholar
Andrae, H.: Metal sulphide-tetraphosphorusdekasulphide phase diagrams. J. Alloys Compd. 189, 209215 (1992).CrossRefGoogle Scholar
Pfitzner, A. and Reiser, S.: Refinement of the crystal structures of Cu3PS4 and Cu3SbS4 and a comment on normal tetahedral structures. Z. Kristallogr. 217, 5154 (2002).CrossRefGoogle Scholar
Uk Son, S., Kyu Park, I., Park, J., and Hyeon, T.: Synthesis of Cu2O coated Cu nanoparticles and their successful applications to Ullmann-type amination coupling reactions of aryl chlorides. Chem. Commun. 1, 778779 (2004).CrossRefGoogle Scholar
Chen, S., Zhang, X., Zhang, Q., and Tan, W.: Trioctylphosphine as both solvent and stabilizer to synthesize CdS nanorods. Nanoscale Res. Lett. 4, 11591165 (2009).CrossRefGoogle ScholarPubMed
Hou, X., Zhang, X., Chen, S., Fang, Y., Yan, J., Li, N., and Qi, P.: Facile synthesis of SERS active Ag nanoparticles in the presence of tri-n-octylphosphine sulfide. Appl. Surf. Sci. 257, 49354940 (2011).CrossRefGoogle Scholar
Olofsson, O.: The Crystal Structure of Cu3P. Acta Chem. Scand. 26, 27772787 (1972).CrossRefGoogle Scholar
Mobarok, M.H. and Buriak, J.M.: Elucidating the surface chemistry of zinc phosphide nanoparticles through ligand exchange. Chem. Mater. 26(15), 4653 (2014).CrossRefGoogle Scholar
De Trizio, L., Gaspari, R., Bertoni, G., Kriegel, I., Moretti, L., Scotognella, F., Maserati, L., Zhang, Y., Messina, G.C., Prato, M., Marras, S., Cavalli, A., and Manna, L.: Cu3-xP nanocrystals as a material platform for near-infrared plasmonics and cation exchange reactions. Chem. Mater. 27, 11201128 (2015).CrossRefGoogle Scholar
Wang, S., Gao, Q., and Wang, J.: Thermodynamic analysis of decomposition of thiourea and thiourea oxides. J. Phys. Chem. B 109, 1728117289 (2005).CrossRefGoogle ScholarPubMed
Timchenko, V.P., Novozhilov, A.L., and Slepysheva, O.A.: Kinetics of Thermal Decomposition of Thiourea. Russ. J. Gen. Chem. 74, 10461050 (2004).CrossRefGoogle Scholar
Unold, T. and Gütay, L.: Photoluminescence analysis of thin-film solar cells. In Advanced Characterization Techniques for Thin Film Solar Cells, Abou-Ras, D., Kirchartz, T., and Rau, U. eds.; Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011; pp. 151175.CrossRefGoogle Scholar
Supplementary material: File

Sheets supplementary material S1

Sheets supplementary material

Download Sheets supplementary material S1(File)
File 4.5 MB