Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T16:50:58.903Z Has data issue: false hasContentIssue false

An examination of the superplastic characteristics of Al–Mg–Sc alloys after processing

Published online by Cambridge University Press:  25 July 2017

Pedro H.R. Pereira
Affiliation:
Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, U.K.
Yi Huang
Affiliation:
Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, U.K.
Megumi Kawasaki
Affiliation:
School of Mechanical, Industrial & Manufacturing Engineering, Oregon State University, Corvallis, Oregon 97331-6001, USA
Terence G. Langdon*
Affiliation:
Materials Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, U.K.; and Departments of Aerospace & Mechanical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-1453, USA
*
a) Address all correspondence to this author. e-mail: langdon@soton.ac.uk
Get access

Abstract

The Al–Mg–Sc alloys have become important materials in research conducted on superplasticity in aluminum-based alloys. Many results are now available and this provides an opportunity to examine the consistency of these data and also to make a direct comparison with the predicted rate of flow in conventional superplasticity. Accordingly, all available data were tabulated with divisions according to whether the samples were prepared without processing using severe plastic deformation (SPD) techniques or they were processed using the SPD procedures of equal-channel angular pressing or high-pressure torsion or they were obtained from friction stir processing. It is shown that all results are mutually consistent, the measured superplastic strain rates have no clear dependence on the precise chemical compositions of the alloys, and there is a general agreement, to within less than one order of magnitude of strain rate, with the theoretical prediction for superplastic flow in conventional materials.

Type
Review
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Lei Lu

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

REFERENCES

Pearson, C.E.: The viscous properties of extruded eutectic alloys of lead-tin and bismuth-tin. J. Inst. Met. 54, 111 (1934).Google Scholar
Barnes, A.J.: Superplastic forming 40 years and still growing. J. Mater. Eng. Perform. 16, 440 (2007).CrossRefGoogle Scholar
Langdon, T.G.: The mechanical properties of superplastic materials. Metall. Mater. Trans. A 13, 689 (1982).CrossRefGoogle Scholar
Valiev, R.Z., Kaibyshev, O.A., Kuznetsov, R.I., Musalimov, R.S., and Tsenev, N.K.: Low-temperature superplasticity of metallic materials. Dokl. Akad. Nauk SSSR 301, 864 (1988).Google Scholar
Valiev, R.Z., Islamgaliev, R.K., and Alexandrov, I.V.: Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45, 103 (2000).CrossRefGoogle Scholar
Valiev, R.Z., Estrin, Y., Horita, Z., Langdon, T.G., Zehetbauer, M.J., and Zhu, Y.T.: Producing bulk ultrafine-grained materials by severe plastic deformation. JOM 58(4), 33 (2006).CrossRefGoogle Scholar
Langdon, T.G.: Twenty-five years of ultrafine-grained materials: Achieving exceptional properties through grain refinement. Acta Mater. 61, 7035 (2013).CrossRefGoogle Scholar
Valiev, R.Z. and Langdon, T.G.: Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 51, 881 (2006).CrossRefGoogle Scholar
Zhilyaev, A.P. and Langdon, T.G.: Using high-pressure torsion for metal processing: Fundamentals and applications. Prog. Mater. Sci. 53, 893 (2008).CrossRefGoogle Scholar
Zhilyaev, A.P., Nurislamova, G.V., Kim, B.K., Baró, M.D., Szpunar, J.A., and Langdon, T.G.: Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion. Acta Mater. 51, 753 (2003).CrossRefGoogle Scholar
Wongsa-Ngam, J., Kawasaki, M., and Langdon, T.G.: A comparison of microstructures and mechanical properties in a Cu–Zr alloy processed using different SPD techniques. J. Mater. Sci. 48, 4653 (2013).CrossRefGoogle Scholar
Iwahashi, Y., Horita, Z., Nemoto, M., and Langdon, T.G.: An investigation of microstructural evolution in equal-channel angular pressing. Acta Mater. 45, 4733 (1997).CrossRefGoogle Scholar
Iwahashi, Y., Horita, Z., Nemoto, M., and Langdon, T.G.: The process of grain refinement in equal-channel angular pressing. Acta Mater. 46, 3317 (1998).CrossRefGoogle Scholar
Park, K.T., Lee, H.J., Lee, C.S., and Shin, D.H.: Effect of post-rolling after ECAP on deformation behavior of ECAPed commercial Al–Mg alloy at 723 K. Mater. Sci. Eng., A 393, 118 (2005).CrossRefGoogle Scholar
Lee, H.J., Han, J.K., Janakiraman, S., Ahn, B., Kawasaki, M., and Langdon, T.G.: Significance of grain refinement on microstructure and mechanical properties of an Al–3% Mg alloy processed by high-pressure torsion. Mater. Sci. Eng., A 393, 118 (2005).Google Scholar
Iwahashi, Y., Horita, Z., Nemoto, M., and Langdon, T.G.: Factors influencing the equilibrium grain size in equal-channel angular pressing: Role of Mg additions to aluminum. Metall. Mater. Trans. A 29, 2503 (1998).CrossRefGoogle Scholar
Wang, J., Iwahashi, Y., Horita, Z., Furukawa, M., Nemoto, M., Valiev, R.Z., and Langdon, T.G.: An investigation of microstructural stability in an Al–Mg alloy with submicrometer grain size. Acta Mater. 44, 2973 (1996).CrossRefGoogle Scholar
Wang, J., Furukawa, M., Nemoto, M., Horita, Z., Valiev, R.Z., and Langdon, T.G.: Enhanced grain growth in an Al–Mg alloy with ultrafine grain size. Mater. Sci. Eng., A 216, 41 (1996).CrossRefGoogle Scholar
Furukawa, M., Iwahashi, Y., Horita, Z., Nemoto, M., Valiev, R.Z., Tsenev, N.K., and Langdon, T.G.: Structural evolution and the Hall–Petch relationship in an Al–Mg–Li–Zr alloy with ultra-fine grain size. Acta Mater. 45, 4751 (1997).CrossRefGoogle Scholar
Hasegawa, H., Komura, S., Utsunomiya, A., Horita, Z., Furukawa, M., Nemoto, M., and Langdon, T.G.: Thermal stability of ultrafine-grained aluminum in the presence of Mg and Zr additions. Mater. Sci. Eng., A 265, 188 (1999).CrossRefGoogle Scholar
Yamashita, A., Yamaguchi, D., Horita, Z., and Langdon, T.G.: Influence of pressing temperature on microstructural development in equal-channel angular pressing. Mater. Sci. Eng., A 287, 100 (2000).CrossRefGoogle Scholar
Avtokratova, E., Sitdikov, O., Mukhametdinova, O., Markushev, M., Narayana Murty, S.V.S., Prasad, M.J.N.V., and Kashyap, B.P.: Microstructural evolution in Al–Mg–Sc–Zr alloy during severe plastic deformation and annealing. J. Alloys Compd. 673, 182 (2016).CrossRefGoogle Scholar
Woodford, D.A.: Strain-rate sensitivity as a measure of ductility. Trans. Am. Soc. Met. 62, 291 (1969).Google Scholar
Langdon, T.G.: The relationship between strain rate sensitivity and ductility in superplastic materials. Scr. Metall. 11, 997 (1977).CrossRefGoogle Scholar
Mohamed, F.A. and Langdon, T.G.: The transition from dislocation climb to viscous glide in creep of solid solution alloys. Acta Metall. 22, 779 (1974).CrossRefGoogle Scholar
Yavari, P. and Langdon, T.G.: An examination of the breakdown in creep by viscous glide in solid solution alloys at high stress levels. Acta Metall. 30, 2181 (1982).CrossRefGoogle Scholar
Mohamed, F.A.: Creep ductility in large-grained solid solution alloys. Scr. Metall. 12, 99 (1978).CrossRefGoogle Scholar
Krajewski, P.E. and Schroth, J.G.: Overview of quick plastic forming technology. Mater. Sci. Forum 551–552, 3 (2007).CrossRefGoogle Scholar
Taleff, E.M., Lesuer, D.R., and Wadsworth, J.: Enhanced ductility in coarse-grained Al–Mg alloys. Metall. Mater. Trans. A 27, 343 (1996).CrossRefGoogle Scholar
Langdon, T.G.: Seventy-five years of superplasticity: Historic developments and new opportunities. J. Mater. Sci. 44, 5998 (2009).CrossRefGoogle Scholar
Otsuka, M., Shibasaki, S., and Kikuchi, M.: Superplasticity in coarse grained Al–Mg alloys. Mater. Sci. Forum 233–234, 193 (1997).Google Scholar
Sawtell, R.R. and Jensen, C.L.: Mechanical properties and microstructures of Al–Mg–Sc alloys. Metall. Mater. Trans. A 21, 421 (1990).CrossRefGoogle Scholar
Nieh, T.G., Hsiung, L.M., Wadsworth, J., and Kaibyshev, R.: High strain rate superplasticity in a continuously recrystallized Al–6% Mg–0.3% Sc alloy. Acta Mater. 46, 2789 (1998).CrossRefGoogle Scholar
Kaibyshev, R., Avtokratova, E., Apollonov, A., and Davies, R.: High strain rate superplasticity in an Al–Mg–Sc–Zr alloy subjected to simple thermomechanical processing. Scr. Mater. 54, 2119 (2006).CrossRefGoogle Scholar
Peng, Y.Y., Yin, Z.M., Nie, B., and Zhong, L.: Effect of minor Sc and Zr on superplasticity of Al–Mg–Mn alloys. Trans. Nonferrous Met. Soc. China 17, 744 (2007).CrossRefGoogle Scholar
Kumar, A., Mukhopadhyay, A.K., and Prasad, K.S.: Superplastic behaviour of Al–Zn–Mg–Cu–Zr alloy AA7010 containing Sc. Mater. Sci. Eng., A 527, 854 (2010).CrossRefGoogle Scholar
Smolej, A., Skaza, B., and Dragojević, V.: Superplastic behavior of Al–4.5Mg–0.46Mn–0.44Sc alloy sheet produced by a conventional rolling process. J. Mater. Eng. Perform. 19, 221 (2010).CrossRefGoogle Scholar
Mukhopadhyay, A.K., Kumar, A., Raveendra, S., and Samajdar, I.: Development of grain structure during superplastic deformation of an Al–Zn–Mg–Cu–Zr alloy containing Sc. Scr. Mater. 64, 386 (2011).CrossRefGoogle Scholar
Cao, X., Xu, G., Duan, Y., Yin, Z., Lu, L., and Wang, Y.: Achieving high superplasticity of a new Al–Mg–Sc–Zr alloy sheet prepared by a simple thermal-mechanical process. Mater. Sci. Eng., A 647, 333 (2015).CrossRefGoogle Scholar
Duan, Y., Xu, G., Zhou, L., Xiao, D., Deng, Y., Yin, Z., Peng, B., Pan, Q., Wang, Y., and Lu, L.: Achieving high superplasticity of a traditional thermal-mechanical processed non-superplastic Al–Zn–Mg alloy sheet by low Sc additions. J. Alloys Compd. 638, 364 (2015).CrossRefGoogle Scholar
Duan, Y.I., Xu, G.F., Xiao, D., Zhou, L.Q., Deng, Y., and Yin, Z.M.: Excellent superplasticity and deformation mechanism of Al–Mg–Sc–Zr alloy processed via simple free forging. Mater. Sci. Eng., A 624, 124 (2015).CrossRefGoogle Scholar
Duan, Y.I., Xu, G.F., Peng, X.Y., Deng, Y., Li, Z., and Yin, Z.M.: Effect of Sc and Zr additions on grain stability and superplasticity of the simple thermal-mechanical processed Al–Zn–Mg alloy sheet. Mater. Sci. Eng., A 648, 80 (2015).CrossRefGoogle Scholar
Kotov, A.D., Mikhaylovskaya, A.V., Kishchik, M.S., Tsarkov, A.A., Aksenov, S.A., and Portnoy, V.K.: Superplasticity of high-strength Al-based alloys produced by thermomechanical treatment. J. Alloys Compd. 688, 336 (2016).CrossRefGoogle Scholar
Mikhaylovskaya, A.V., Yakovtseva, O.A., Cheverikin, V.V., Kotov, A.D., and Portnoy, V.K.: Superplastic behaviour of Al–Mg–Zn–Zr–Sc-based alloys at high strain rates. Mater. Sci. Eng., A 659, 225 (2016).CrossRefGoogle Scholar
Sun, X., Pan, Q., Li, M., Shi, Y., and Yan, J.: Superplastic deformation behavior of cold-rolled Al–Mg–Sc–Zr alloy. Chin. J. of Nonferrous Met. 26, 280 (2016).Google Scholar
Xu, G., Cao, X., Zhang, T., Duan, Y., Peng, X., Deng, Y., and Yin, Z.: Achieving high strain rate superplasticity of an Al–Mg–Sc–Zr alloy by a new asymmetrical rolling technology. Mater. Sci. Eng., A 672, 98 (2016).CrossRefGoogle Scholar
Xiang, H., Pan, Q.L., Yu, X.H., Huang, X., Sun, X., Wang, X.D., Li, M.J., and Yin, Z.M.: Superplasticity behaviors of Al–Zn–Mg–Zr cold-rolled alloy sheet with minor Sc addition. Mater. Sci. Eng., A 676, 128 (2016).CrossRefGoogle Scholar
Li, M., Pan, Q., Shi, Y., Sun, X., and Xiang, H.: High strain rate superplasticity in an Al–Mg–Sc–Zr alloy processed via simple rolling. Mater. Sci. Eng., A 687, 298 (2017).CrossRefGoogle Scholar
Komura, S., Berbon, P.B., Furukawa, M., Horita, Z., Nemoto, M., and Langdon, T.G.: High strain rate superplasticity in an Al–Mg alloy containing scandium. Scr. Mater. 38, 1851 (1998).CrossRefGoogle Scholar
Horita, Z., Furukawa, M., Nemoto, M., Barnes, A.J., and Langdon, T.G.: Superplastic forming at high strain rates after severe plastic deformation. Acta Mater. 48, 3633 (2000).CrossRefGoogle Scholar
Komura, S., Horita, Z., Furukawa, M., Nemoto, M., and Langdon, T.G.: Influence of scandium on superplastic ductilities in an Al–Mg–Sc alloy. J. Mater. Res. 15, 2571 (2000).CrossRefGoogle Scholar
Akamatsu, H., Fujinami, T., Horita, Z., and Langdon, T.G.: Influence of rolling on the superplastic behavior of an Al–Mg–Sc alloy after ECAP. Scr. Mater. 44, 759 (2001).CrossRefGoogle Scholar
Furukawa, M., Utsunomiya, A., Matsubara, K., Horita, Z., and Langdon, T.G.: Influence of magnesium on grain refinement and ductility in a dilute Al–Sc alloy. Acta Mater. 49, 3829 (2001).CrossRefGoogle Scholar
Komura, S., Horita, Z., Furukawa, M., Nemoto, M., and Langdon, T.G.: An evaluation of the flow behavior during high strain rate superplasticity in an Al–Mg–Sc alloy. Metall. Mater. Trans. A 32, 707 (2001).Google Scholar
Komura, S., Furukawa, M., Horita, Z., Nemoto, M., and Langdon, T.G.: Optimizing the procedure of equal-channel angular pressing for maximum superplasticity. Mater. Sci. Eng., A 297, 111 (2001).CrossRefGoogle Scholar
Lee, S., Utsunomiya, A., Akamatsu, H., Neishi, K., Furukawa, M., Horita, Z., and Langdon, T.G.: Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al–Mg alloys. Acta Mater. 50, 553 (2002).CrossRefGoogle Scholar
Perevezentsev, V.N., Chuvil’deev, V.N., Kopylov, V.I., Sysoev, A.N., and Langdon, T.G.: Developing high strain rate superplasticity in Al–Mg–Sc–Zr alloys using equal-channel angular pressing. Ann. Chim. Sci. Mat. 27, 99 (2002).CrossRefGoogle Scholar
Ota, S., Akamatsu, H., Neishi, K., Furukawa, M., Horita, Z., and Langdon, T.G.: Low-temperature superplasticity in aluminium alloys processed by equal-channel angular pressing. Mater. Trans. 43, 2364 (2002).CrossRefGoogle Scholar
Perevezentsev, V.N., Chuvil’deev, V.N., Sysoev, A.N., Kopylov, V.I., and Langdon, T.G.: Achieving high-strain-rate superplasticity in Al–Mg–Sc–Zr alloys after severe plastic deformation. Phys. Met. Metallogr. 94, S45 (2002).Google Scholar
Islamgaliev, R.K., Yunusova, N.F., Valiev, R.Z., Tsenev, N.K., Perevezentsev, V.N., and Langdon, T.G.: Characteristics of superplasticity in an ultrafine-grained aluminum alloy processed by ECA pressing. Scr. Mater. 49, 467 (2003).CrossRefGoogle Scholar
Musin, F., Kaibyshev, R., Motohashi, Y., and Itoh, G.: High strain rate superplasticity in a commercial Al–Mg–Sc alloy. Scr. Mater. 50, 511 (2004).CrossRefGoogle Scholar
Perevezentsev, V.N., Chuvil’deev, V.N., Kopylov, V.I., Sysoev, A.N., and Langdon, T.G.: High-strain-rate superplasticity of Al–Mg–Sc–Zr alloys. Russ. Metall. 1, 28 (2004).Google Scholar
Kamachi, M., Furukawa, M., Horita, Z., and Langdon, T.G.: Achieving superplasticity of Al–1% Mg–0.2% Sc alloy in plate samples processed by equal channel angular pressing. Mater. Trans. 45, 2521 (2004).CrossRefGoogle Scholar
Park, K-T., Lee, H-J., Lee, C.S., Nam, W.J., and Shin, D.H.: Enhancement of high strain rate superplastic elongation of a modified 5154 Al by subsequent rolling after equal channel angular pressing. Scr. Mater. 51, 479 (2004).CrossRefGoogle Scholar
Sakai, G., Horita, Z., and Langdon, T.G.: An evaluation of superplastic anisotropy after processing by equal-channel angular pressing. Mater. Trans. 45, 3079 (2004).CrossRefGoogle Scholar
Sakai, G., Horita, Z., and Langdon, T.G.: Grain refinement and superplasticity in an aluminum alloy processed by high-pressure torsion. Mater. Sci. Eng., A 393, 344 (2005).CrossRefGoogle Scholar
Kaibyshev, R., Shipilova, K., Musin, F., and Motohashi, Y.: Achieving high strain rate superplasticity in an Al–Li–Mg alloy through equal channel angular extrusion. Mater. Sci. Technol. 21, 408 (2005).CrossRefGoogle Scholar
Málek, P., Turba, K., Cieslar, M., Drbohlav, I., and Kruml, T.: Structure development during superplastic deformation of an Al–Mg–Sc–Zr alloy produced by equal-channel angular pressing. Mater. Sci. Eng., A 462, 95 (2007).CrossRefGoogle Scholar
Turba, K., Málek, P., and Cieslar, M.: Superplasticity in an Al–Mg–Zr–Sc alloy produced by equal-channel angular pressing. Mater. Sci. Eng., A 462, 91 (2007).CrossRefGoogle Scholar
Avtokratova, E., Sitdikov, O., Markushev, M., and Mulyukov, R.: Extraordinary high-strain rate superplasticity of severely deformed Al–Mg–Sc–Zr alloy. Mater. Sci. Eng., A 538, 386 (2012).CrossRefGoogle Scholar
Avtokratova, E., Sitdikov, O., Mukhametdinova, O., and Markushev, M.: High strain rate superplasticity in an Al–Mg–Sc–Zr alloy produced by equal channel angular pressing and subsequent cold and warm rolling. Mater. Sci. Forum 710, 223 (2012).CrossRefGoogle Scholar
Kaibyshev, R., Zhemchuzhnikova, D., and Mogucheva, A.: Effect of Mg content on high strain rate superplasticity of Al–Mg–Sc–Zr alloys subjected to equal-channel angular pressing. Mater. Sci. Forum 735, 265 (2013).CrossRefGoogle Scholar
Avtokratova, E., Sitdikov, O., and Markushev, M.: Effect of cold/warm rolling following warm ECAP on superplastic properties of an Al–5.8% Mg–0.32% Sc alloy. Lett. Mater. 5, 319 (2015).CrossRefGoogle Scholar
Dubyna, A., Malopheyev, S., and Kaibyshev, R.: Effect of rolling on superplastic behavior of an Al–Mg–Sc alloy with ultrafine-grained structure. Mater. Sci. Forum 838–839, 416 (2016).CrossRefGoogle Scholar
Mogucheva, A., Yuzbekova, D., and Kaibyshev, R.: Superplasticity in a 5024 aluminium alloy subjected to ECAP and subsequent cold rolling. Mater. Sci. Forum 838–839, 428 (2016).CrossRefGoogle Scholar
Yuzbekova, D., Mogucheva, A., and Kaibyshev, R.: Low-temperature superplasticity in an Al–Mg–Sc alloy processed by ECAP. Mater. Sci. Forum 838–839, 422 (2016).CrossRefGoogle Scholar
Yuzbekova, D., Mogucheva, A., and Kaibyshev, R.: Superplasticity of ultrafine-grained Al–Mg–Sc–Zr alloy. Mater. Sci. Eng., A 675, 228 (2016).CrossRefGoogle Scholar
Pereira, P.H.R., Wang, Y.C., Huang, Y., and Langdon, T.G.: Influence of grain size on the flow properties of an Al–Mg–Sc alloy over seven orders of magnitude of strain rate. Mater. Sci. Eng., A 685, 367 (2017).CrossRefGoogle Scholar
Pereira, P.H.R., Huang, Y., and Langdon, T.G.: Thermal stability and superplastic behaviour of an Al–Mg–Sc alloy processed by ECAP and HPT at different temperatures. IOP Conf. Ser.: Mater Sci. Eng. 194, 012013 (2017).CrossRefGoogle Scholar
Perevezentsev, V.N., Shcherban, M.Y., Murashkin, M.Y., and Valiev, R.Z.: High-strain-rate superplasticity of nanocrystalline aluminum alloy 1570. Tech. Phys. Lett. 33, 648 (2007).CrossRefGoogle Scholar
Horita, Z. and Langdon, T.G.: Achieving exceptional superplasticity in a bulk aluminum alloy processed by high-pressure torsion. Scr. Mater. 58, 1029 (2008).CrossRefGoogle Scholar
Harai, Y., Edalati, K., Horita, Z., and Langdon, T.G.: Using ring samples to evaluate the processing characteristics in high-pressure torsion. Acta Mater. 57, 1147 (2009).CrossRefGoogle Scholar
Pereira, P.H.R., Huang, Y., and Langdon, T.G.: Examining the mechanical properties and superplastic behaviour in an Al–Mg–Sc alloy after processing by HPT. Lett. Mater. 5, 294 (2015).CrossRefGoogle Scholar
Charit, I. and Mishra, R.S.: Low temperature superplasticity in a friction-stir-processed ultrafine grained Al–Zn–Mg–Sc alloy. Acta Mater. 53, 4211 (2005).CrossRefGoogle Scholar
Liu, F.C. and Ma, Z.Y.: Achieving exceptionally high superplasticity at high strain rates in a micrograined Al–Mg–Sc alloy produced by friction stir processing. Scr. Mater. 59, 882 (2008).CrossRefGoogle Scholar
Liu, F.C., Ma, Z.Y., and Chen, L.Q.: Low-temperature superplasticity of Al–Mg–Sc alloy produced by friction stir processing. Scr. Mater. 60, 968 (2009).CrossRefGoogle Scholar
Liu, F.C. and Ma, Z.Y.: Contribution of grain boundary sliding in low-temperature superplasticity of ultrafine-grained aluminum alloys. Scr. Mater. 62, 125 (2010).CrossRefGoogle Scholar
Liu, F.C., Ma, Z.Y., and Zhang, F.C.: High strain rate superplasticity in a micro-grained Al–Mg–Sc alloy with predominant high angle grain boundaries. J. Mater. Sci. Technol. 28, 1025 (2012).CrossRefGoogle Scholar
Smolej, A., Klobčar, D., Skaza, B., Nagode, A., Slaček, E., Dragojević, V., and Smolej, S.: Superplasticity of the rolled and friction stir processed Al–4.5Mg–0.35Sc–0.15Zr alloy. Mater. Sci. Eng., A 590, 239 (2014).CrossRefGoogle Scholar
Smolej, A., Klobčar, D., Skaza, B., Nagode, A., Slaček, E., Dragojević, V., and Smolej, S.: The superplasticity of friction stir processed Al–5Mg alloy with additions of scandium and zirconium. Int. J. Mater. Res. 105, 1218 (2014).CrossRefGoogle Scholar
Ma, Z.Y.: Friction stir processing technology: A review. Metall. Mater. Trans. A 39, 642 (2008).CrossRefGoogle Scholar
He, X., Gu, F., and Ball, A.: A review of numerical analysis of friction stir welding. Prog. Mater. Sci. 65, 1 (2014).CrossRefGoogle Scholar
Iwahashi, Y., Wang, J., Horita, Z., Nemoto, M., and Langdon, T.G.: Principle of equal-channel angular pressing for the processing of ultra-fine grained materials. Scr. Mater. 35, 143 (1996).CrossRefGoogle Scholar
Kamachi, M., Furukawa, M., Horita, Z., and Langdon, T.G.: Equal-channel angular pressing using plate samples. Mater. Sci. Eng., A 361, 258 (2003).CrossRefGoogle Scholar
Takizawa, Y., Masuda, T., Fujimitsu, K., Kajita, T., Watanabe, K., Yumoto, M., Otagiri, Y., and Horita, Z.: Scaling up of high-pressure sliding (HPS) for grain refinement and superplasticity. Metall. Mater. Trans. A 47, 4669 (2016).CrossRefGoogle Scholar
Zhao, Y.H., Guo, Y.Z., Wei, Q., Dangelewicz, A.M., Xu, C., Zhu, Y.T., Langdon, T.G., Zhou, Y.Z., and Lavernia, E.J.: Influence of specimen dimensions on the tensile behavior of ultrafine-grained Cu. Scr. Mater. 59, 627 (2008).CrossRefGoogle Scholar
Zhao, Y.H., Guo, Y.Z., Wei, Q., Topping, T.D., Dangelewicz, A.M., Zhu, Y.T., Langdon, T.G., and Lavernia, E.J.: Influence of specimen dimensions and strain measurement methods on tensile stress–strain curves. Mater. Sci. Eng., A 525, 68 (2009).CrossRefGoogle Scholar
Valiev, R.Z., Salimonenko, D.A., Tsenev, N.K., Berbon, P.B., and Langdon, T.G.: Observations of high strain rate superplasticity in commercial aluminum alloys with ultrafine grain sizes. Scr. Mater. 37, 1945 (1997).CrossRefGoogle Scholar
Higashi, K., Mabuchi, M., and Langdon, T.G.: High-strain-rate superplasticity in metallic materials and the potential for ceramic materials. ISIJ Int. 36, 1423 (1996).CrossRefGoogle Scholar
Langdon, T.G.: An evaluation of the strain contributed by grain boundary sliding in superplasticity. Mater. Sci. Eng., A 174, 225 (1994).CrossRefGoogle Scholar
Falk, L.K.L., Howell, P.R., Dunlop, G.L., and Langdon, T.G.: The role of matrix dislocations in the superplastic deformation of a copper alloy. Acta Metall. 34, 1203 (1986).CrossRefGoogle Scholar
Valiev, R.Z. and Langdon, T.G.: An investigation of the role of intragranular dislocation strain in the superplastic Pb–62% Sn eutectic alloy. Acta Metall. Mater. 41, 949 (1993).CrossRefGoogle Scholar
Xun, Y. and Mohamed, F.A.: Slip-accommodated superplastic flow in Zn–22 wt% Al. Philos. Mag. 83, 2247 (2003).CrossRefGoogle Scholar
Mohamed, F.A. and Langdon, T.G.: Deformation mechanism maps for superplastic materials. Scr. Metall. 10, 759 (1976).CrossRefGoogle Scholar
Langdon, T.G.: A unified approach to grain boundary sliding in creep and superplasticity. Acta Metall. Mater. 42, 2437 (1994).CrossRefGoogle Scholar
Kawasaki, M. and Langdon, T.G.: Principles of superplasticity in ultrafine-grained materials. J. Mater. Sci. 42, 1782 (2007).CrossRefGoogle Scholar
Kawasaki, M., Balasubramanian, N., and Langdon, T.G.: Flow mechanisms in ultrafine-grained metals with an emphasis on superplasticity. Mater. Sci. Eng., A 528, 6624 (2011).CrossRefGoogle Scholar
Kawasaki, M. and Langdon, T.G.: Review: Achieving superplasticity in metals processed by high-pressure torsion. J. Mater. Sci. 49, 6487 (2014).CrossRefGoogle Scholar
Kawasaki, M. and Langdon, T.G.: Review: Achieving superplastic properties in ultrafine-grained materials at high temperatures. J. Mater. Sci. 51, 19 (2016).CrossRefGoogle Scholar
Mohamed, F.A. and Langdon, T.G.: Deformation mechanism maps based on grain size. Metall. Trans. 5, 2339 (1974).CrossRefGoogle Scholar
Sauvage, X., Enikeev, N., Valiev, R., Nasedkina, Y., and Murashkin, M.: Atomic-scale analysis of the segregation and precipitation mechanisms in a severely deformed Al–Mg alloy. Acta Mater. 72, 125 (2014).CrossRefGoogle Scholar
Buranova, Yu., Kulitskiy, V., Peterlechner, M., Mogucheva, A., Kaibyshev, R., Divinski, S.V., and Wilde, G.: Al3(Sc,Zr)-based precipitates in Al–Mg alloy: Effect of severe deformation. Acta Mater. 124, 210 (2017).CrossRefGoogle Scholar