Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T00:43:31.581Z Has data issue: false hasContentIssue false

An Environmental Transmission Electron Microscope for in situ Synthesis and Characterization of Nanomaterials

Published online by Cambridge University Press:  01 July 2005

Renu Sharma*
Affiliation:
Center for Solid State Science, Arizona State University, Tempe, Arizona 85287-1704
*
a)Address all correspondence to this author. e-mail: renu.sharma@asu.edu
Get access

Abstract

The world of nanomaterials has become the real world for most applications in the area of nanotechnology. As postsynthesis handling of materials at the nanoscale level is impractical, nanomaterials must be synthesized directly as part of a device or circuit. The demands of nanotechnology have led to modifications in the design of transmission electron microscopes (TEMs) that enable in situ synthesis and characterization simultaneously. The environmental TEM (ETEM) is one such modified instrument that has often been used to follow gas–solid and/or liquid–solid interactions at elevated temperatures. Although the history and development of the ETEM, also called the controlled atmosphere or environmental cell TEM, is as old as transmission electron microscopy itself, developments in the design of medium-voltage TEMs have succeeded in bringing resolutions down to the subnanometer level. A modern ETEM equipped with a field-emission gun, energy filter or electron energy-loss spectrometer, scanning transmission electron microscopy coils, and bright-field and dark-field detectors can be a versatile tool for understanding chemical processes at the nanometer level. This article reviews the design and operations of a dedicated ETEM. Its applications range from the in situ characterization of reaction steps, such as oxidation-reduction and hydroxylation, to the in situ synthesis of nanomaterials, such as quantum dots and carbon nanotubes. Some examples of the current and the future applications for the synthesis and characterization of nanomaterials are also discussed.

Type
Reviews
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Dahmen, U., Hagege, S., Faudot, F., Radetic, T. and Johnson, E.: Observation of interface pre-melting at grain-boundary precipitates of Pb in Al. Philos. Mag. 84, 2651 (2004).CrossRefGoogle Scholar
2Senda, Y., Sasaki, K. and Saka, H.: Melting temperature of a wedge-shaped thin crystal of tin. Philos. Mag. 84, 2635 (2004).CrossRefGoogle Scholar
3Tanaka, H., Hirashita, N. and Sinclair, R.: Kinetic analysis of the C49-C54 phase transformation in TiSi2 thin films by in situ observation. Jap. J. Appl. Phys. 37, 4284 (1998).CrossRefGoogle Scholar
4Crozier, P.A., Liu, Rou-Jane, Smith, C.M., Hucul, D.A., Blackson, J. and Salaita, G.: In situ electron microscopy studies of the sintering of palladium nanoparticles on alumina during catalyst regeneration process. Microsc. Microanal. 10, 77 (2004).Google Scholar
5Ramirez, A.G., Itoh, T. and Sinclair, R.: Crystallization of amorphous carbon thin films in the presence of magnetic media. J. Appl. Phys. 85, 1508 (1999).CrossRefGoogle Scholar
6Minor, A.M., Lilleeodden, E.T., Stach, E.A., Morris, J.W. Jr.: In-situ transmission-electron-microscopy study of the nanoindentation behavior of Al. J. Electron. Mater. 31, 958 (2002).CrossRefGoogle Scholar
7Jin, M., Minor, A.M., Stach, E.A., Morris, J.W. Jr.: Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature. Acta Mater. 52, 5381 (2004).CrossRefGoogle Scholar
8Treacy, M.M.J., Krishnan, A. and Yianilos, P.N.: Inferring physical parameters from images of vibrating carbon nanotubes. Microsc. Microanal. 6, 317 (2000).CrossRefGoogle ScholarPubMed
9Treacy, M.M.J., Ebbesen, T.W. and Gibson, J.M.: Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 678 (1996).CrossRefGoogle Scholar
10Poncharal, P., Wang, Z.L., Ugrate, D. and de Heer, W.A.: Electrostatic deflections and electrochemical resonances of carbon nanotubes. Science 283, 1513 (1999).CrossRefGoogle Scholar
11Cumings, J., Zettl, A., McCartney, M.R. and Spence, J.C.H.: Electron holography of field-emitting carbon nanotubes. Phys. Rev. Lett. 88, 056804 (2002).CrossRefGoogle ScholarPubMed
12Wang, Z.L.: New developments in transmission electron microscopy for nanotechnology. Adv. Mater. 15, 1497 (2003).CrossRefGoogle Scholar
13Poppa, H.: High resolution, high speed ultrahigh vacuum microscopy. J. Vac. Sci. Technol. A 22, 1931 (2004).CrossRefGoogle Scholar
14Butler, P. and Hale, K. In situ gas-solid reactions, in Practical Methods in Electron Microscopy Vol. 9, (North Holland, Amsterdam, The Netherlands, 1981) pp. 239 and 309.Google Scholar
15Parsons, D.F., Matricardi, V.R., Moretz, R.C. and Turner, J.N. Electron microscopy and diffraction of wet unstained and unfixed biological objects, in Advances in Biological and Medical Physics, Vol. 15, edited by Lawrence, J.H. and Gofman, J.W. (Academic Press, New York, NY, 1974) p. 161.Google Scholar
16Allison, D.L. Environmental devices in electron microscopy, in Principles and Techniques in Electron Microscopy, Biological Applications, Vol. 5, edited by Hayat, M.A. (Van Nostrand Reinhold, New York, NY, 1975) p. 52.Google Scholar
17Daulton, T.L., Little, B.J., Lowe, K. and Jones-Meehan, J.: In situ environmental cell-transmission-electron-microscopy study of microbial reduction of chromium (VI) using electron energy loss spectroscopy. Microsc. Microanal. 7, 470 (2001).CrossRefGoogle ScholarPubMed
18Suda, H., Ishikawa, K. and Fukami, A.: Improvement of spacer for injection of TOW solutions in environmental cell. J. Electron Microsc. 39, 317 (1990).Google Scholar
19Parkinson, G.M.: High resolution, in situ controlled atmosphere transmission electron microscopy (CTEM) of heterogeneous catalysts. Catal. Lett. 2, 303 (1989).CrossRefGoogle Scholar
20Williamson, M.J., Tromp, R.M., Vereecken, P.M., Hull, R. and Rosss, F.M.: Dynamic microscopy of nanoscale cluster growth at solid-liquid interface. Nat. Mater. 2(8), 532 (2003).CrossRefGoogle ScholarPubMed
21Gai, P.L.: Development of wet environmental TEM (Wet-ETEM) for in situ studies of liquid-catalyst reactions on the nanoscale. Microsc. Microanal. 8, 21 (2002).CrossRefGoogle ScholarPubMed
22Hashimoto, H., Naiki, T., Etoch, T. and Fujiwara, K.: High temperature gas reaction specimen chamber for an electron microscope. Jap. J. Appl. Phys. 7, 946 (1968).CrossRefGoogle Scholar
23Flower, H.M.: High voltage electron microscopy of environmental reactions. J. Microsc. 97, 171 (1973).CrossRefGoogle Scholar
24Doole, R.C., Parkinson, G.M. and Stead, J.M.: A high resolution gas reaction cell for JEM 4000. Inst. Phys. Conf. Ser. 119, 157 (1991).Google Scholar
25Lee, T.C., Dewald, D.K., Eades, J.A., Robertson, I.M. and Birnbaum, H.K.: An environmental cell transmission electron microscope. Rev. Sci. Instrum. 62, 1438 (1991).CrossRefGoogle Scholar
26Boyes, E.D., Gai, P.L. and Hanna, L.G.: Controlled environment (ECELL) TEM for dynamic in-situ reaction studies with HREM lattice imaging. Proc. Mater. Res. Soc. 404, 53 (1996).CrossRefGoogle Scholar
27Sharma, R. and Weiss, K.: Development of a TEM to study in situ structural and chemical changes at atomic level during gas solid interaction at elevated temperatures. Microsc. Res. Tech. 42, 270 (1998).3.0.CO;2-U>CrossRefGoogle ScholarPubMed
28Sharma, R.: Design and applications of environmental cell transmission electron microscope for in situ observations of gas-solid reactions. Microsc. Microanal. 7, 494 (2001).CrossRefGoogle Scholar
29Swann, P.R. and Tighe, N.J.: Performance of differentially pumped environmental cell in the AE1 EM7, in Proc. 5th Eur. Reg. Cong. Electron Microscopy, 436 (1972).Google Scholar
30Robertson, I. and Teter, D.: Controlled environment transmission electron microscopy. Microsc. Res. Tech. 42, 260 (1998).3.0.CO;2-U>CrossRefGoogle ScholarPubMed
31Hansen, T.W., Wagner, J.B., Hansen, P.L., Dahl, S., Topsoe, H. and Jacobsen, J.H.: Atomic-resolution in situ transmission electron microscopy of a promoter of a heterogeneous catalyst. Science 294, 1508 (2001).CrossRefGoogle ScholarPubMed
32Sharma, R., Crozier, P.A., Marx, R. and Weiss, K.: An environmental transmission electron microscope for in situ observation of chemical processes at the nanometer level. Microsc. Microanal. 912 CD (2003).CrossRefGoogle Scholar
33Baker, R.T.K., Barber, M.A., Harris, P.S., Feates, F.S. and Waite, R.J.: Nucleation and growth of carbon deposits from the Ni catalyzed decomposition of acetylene. J. Catal. 26, 51 (1972).CrossRefGoogle Scholar
34Baker, R.T.K., Harris, P.S., Thomas, R.B. and Waite, R.J.: Formation of filamentous car bon from iron, cobalt and chromium catalyzed deposition of acetylene. J. Catal. 30, 315 (1973).CrossRefGoogle Scholar
35Baker, R.T.K.: Catalytic growth of carbon filaments. Carbon 27, 315 (1989).CrossRefGoogle Scholar
36Baker, R.T.K., Chludzinski, J.J. Jr.Dudash, N.S. and Simoens, A.J.: The formation of filamentous carbon from decomposition of acetylene over vanadium and molybdenum. Carbon 21, 463 (1983).CrossRefGoogle Scholar
37Gai, P.L. and Boyes, E.D.: Defects in oxide catalysts: Fundamental studies of catalysis in action. Catal. Rev. Sci. Eng. 34, 1 (1992).Google Scholar
38Gai, P.L. and Kourtakis, K.: Solid state defect mechanism in vanadyl pyrophosphate catalyst-implications for selective oxidation. Science 267, 661 (1995).CrossRefGoogle ScholarPubMed
39Kourtakis, K. and Gai, P.L.: Novel microstructures and reactivity for n-butane oxidation: advances and challenges in vapor phase alkane oxidation catalysis. J. Mol. Catal. A220, 93 (2004).CrossRefGoogle Scholar
40Datye, A.K., Kalakkad, D.S., Volkl, E. and Allard, L.F.: Electron holography of catalysts, in Abstracts of Papers of the American Chemical Society 209, 120 (1995).Google Scholar
41Crozier, P.A. and Datye, A.K.: Direct observation of reduction of PdO to Pd metal by in situ electron microscopy. Stud. Surf. Sci. Catal. 130, 3119 (2000).CrossRefGoogle Scholar
42Crozier, P.A., Sharma, R. and Datye, A.K.: Oxidation and reduction of small palladium particles on silica. Microsc. Microanal. 4, 278 (1998).CrossRefGoogle Scholar
43Gai, P.L. and Boyes, E.D. In Electron Microscopy of heterogeneous catalysis. Series in Microscopy and Materials Science (Institute of Physics Publishing, Bristol, Philadelphia, PA, 2003).CrossRefGoogle Scholar
44Birnbaum, H.K. and Sofronis, P.: Hydrogen enhanced local plasticity—a mechanism for hydrogen-related fracture. Mater. Sci. Eng., A 176, 191 (1993).CrossRefGoogle Scholar
45Teter, D.F., Robertson, I.M. and Birbaum, H.K.: The effects of hydrogen on the deformation and fracture of titanium. Acta Mater. 49, 4313 (2001).CrossRefGoogle Scholar
46Robertson, I.M.: The effect of hydrogen on dislocation dynamics. Eng. Fract. Mech. 68, 671 (2001).CrossRefGoogle Scholar
47Atzmon, Z., Sharma, R., Mayer, J.W. and Hong, S.Q.: An in situ transmission-electron-microscopy study during NH3 ambient annealing of Cu-Cr thin films, in Mechanisms of Thin Film Evolution, edited by Yalisove, S.M., Thompson, C.V., and Eaglesham, D.J. (Mater. Res. Soc. Symp. Proc. 317, Pittsburgh, PA, 1994), p. 245.Google Scholar
48Atzmon, Z., Sharma, R., Russell, S.W. and Mayer, J.W.: Kinetics of copper grain growth during nitridation of Cu-Cr and Cu-Ti thin films by in situ TEM. Proc. Mater. Res. Soc. Symp. 337, 619 (1994).CrossRefGoogle Scholar
49Crozier, P.A., Oleshko, V.P., Weswood, A.D. and Cantrell, R.D.: In situ environmental transmission electron microscopy of gas phase Ziegler-Natta catalytic polymerization of propylene. Inst. Phys. Conf. Ser. 168, 393 (2001).Google Scholar
50Oleshko, V.P., Crozier, P.A., Cantrell, R.D. and Westwood, A.D.: In situ real time environmental TEM of gas phase Ziegler-Natta catalytic polymerization of propylene. J. Electron Microsc. 51, S27 (2002).CrossRefGoogle Scholar
51Kohyama, N., Fukushima, K. and Kukami, A.: Oservation of hydrated form of clay-minerals by means of environmental cell method. J. Electron Microsc. 28, 258 (1979).Google Scholar
52McKelvy, M.J., Sharma, R., Chizmeshya, A.V.G., Carpenter, R.W. and Streib, K.: Magnesium hydroxide dehydroxylation: In situ nanoscale observations of lamellar nucleation and growth. Chem. Mater. 13, 921 (2001).CrossRefGoogle Scholar
53Sharma, R., McKelvy, M.J., Béarat, H., Chizmeshya, A.V.G. and Carpenter, R.W.: In situ nanoscale observations of the Mg(OH)2 dehydroxylation and rehydroxylation mechanisms. Philos. Mag. 84, 2711 (2004).CrossRefGoogle Scholar
54Liu, P.A. Rou-Jane, Crozier, P.A., Smith, C.M., Hucul, D.A., Blackson, J. and Salaita, G.: Metal sintering mechanisms and regeneration of palladium/alumina hydrogenation catalyst. Appl. Catal., A 282, 111 (2005).CrossRefGoogle Scholar
55Gajdadziska-Josifoviska, M., Plass, R., Schofield, M.A., Gese, D.R. and Sharma, R.: In situ and ex situ electron microscopy studies of polar oxide surfaces with rock-salt structure. J. Elelctron Microsc. 51 S13 (2002).CrossRefGoogle Scholar
56Gajdardziska-Josifovska, M. and Sharma, R.: Interaction of oxide surfaces with water: Environmental transmission electron microscopy of MgO hydroxylation. Microsc. Microanal. (in press).Google Scholar
57Sayagués, M.J. and Hutchison, J.L.: From Nb12O29 to Nb22O54 in a controlled environment high resolution microscope. J. Solid State Chem. 146, 202 (1999).CrossRefGoogle Scholar
58Sayagués, M.J. and Hutchison, J.L.: A new niobium tungsten oxide as a result of an in situ reaction in a gas reaction cell microscope. J. Solid State Chem. 143, 33 (1999).CrossRefGoogle Scholar
59Sharma, R. and Crozier, P.A.: In situ electron microscopy of CeO2 and CeO2-ZrO2 reduction. Microsc. Microanal. 161, 569 (1999).Google Scholar
60Sharma, R., Crozier, P.A., Kang, Z.C. and Eyring, L.: Observation of dynamic nanostructural and nanochemical changes in ceria-based catalysts during in-situ reduction. Philos. Mag. 84, 2731 (2004).CrossRefGoogle Scholar
61Lopez-Cartes, C., Bernal, S., Calvino, J.J., Cauqui, M.A., Blanco, G., Perez-Omil, J.A., Pintado, J.M., Helveg, S. and Hansen, P.L.: In situ transmission electron microscopy investigation of Ce (IV) and Pr (IV) reducibility in a Rh (1%)/Ce0.8Pr0.2O(2-x) catalyst. Chem. Commun. 5, 644 (2003).CrossRefGoogle Scholar
62Kang, Z.C., Jhang, J. and Eyring, L.: The structural principles that underlie the higher oxides of rare earths. Z. Anorg. Allg. Chem. 622, 465 (1996).CrossRefGoogle Scholar
63Knappe, P. and Eyring, L.: Preparation and electron microscopy of intermediate phases in the interval Ce7O12-Ce11O20. J. Solid State Chem. 58, 312 (1985).CrossRefGoogle Scholar
64Drucker, J., Sharma, R., Kouvetakis, J. and Weiss, K.: In situ, real time observation of Al chemical vapor deposition on SiO2 in an environmental transmission electron microscope. J. Appl. Phys. 77, 2846 (1995).CrossRefGoogle Scholar
65Drucker, J., Sharma, R., Kouvetakis, J. and Weiss, K.: In-situ study of electron beam induced chemical vapor deposition of Au in an environmental TEM, in In Situ Electron and Tunneling Microscopy of Dynamic Processes, edited by Sharma, R., Gai, P.L., Gajdardziska-Josifovska, M., Sinclair, R., and Whitman, L.J. (Mater. Res. Soc. Symp. Proc. 404, Pittsburgh, PA, 1996), p. 75.Google Scholar
66Ross, F.M., Kammler, M., Reuter, M.C. and Hull, R.: In-situ observations of self-assembled island nucleation on patterned substrates. Philos. Mag. 84, 2687 (2004).CrossRefGoogle Scholar
67Jiang, H., Borca, C.N., Xu, B. and Robertson, B.W.: Fabrication of 2and 3-dimensional nanostructures. Int. J. Mod. Phys. B15, 3207 (2001).CrossRefGoogle Scholar
68Mitsuishi, K., Shimojo, M., Han, M. and Furuya, K.: Electron-beam-induced deposition using a subnanometer-sized probe of high-energy electrons. Appl. Phys. Lett. 83, 2064 (2003).CrossRefGoogle Scholar
69Utke, I., Bret, T., Laub, D., Buffat, P., Scandella, L. and Hoffman, P.: Thermal effects during focused electron beam induced deposition of nanocomposite magnetic-cobalt-containing tips. Microelectron. Eng. 73–74, 553 (2004).CrossRefGoogle Scholar
70Crozier, P.A., Tolle, J., Kouvetakis, J. and Ritter, C.: Synthesis of uniform GaN quantum dot arrays via electron nanolithography of D2GaN3. Appl. Phys. Lett. 84, 3441 (2004).CrossRefGoogle Scholar
71Helveg, S., Lopez-Cartes, C., Sehested, J., Hansen, P.L., Clausen, B.S., Rostrup-Nielsen, J.R., Abild-Pedersen, F. and Norskov, J.: Atomicscale imaging of carbon nanofibre growth. Nature 427, 426 (2004).CrossRefGoogle ScholarPubMed
72Sharma, R. and Iqbal, Z.: In situ observations of carbon nanotube formation using environmental electron microscopy (ETEM). Appl. Phys. Lett. 84, 990 (2003).CrossRefGoogle Scholar
73Sharma, R., Rez, P., Treacy, M.M.J. and Stuart, S.J.: In situ observation of the growth mechanisms of carbon nanotubes under diverse reaction conditions. J. Electron Microsc. (in press).Google Scholar
74Hutchison, J.L., Titchmarsh, J.M., Möbus, D.J.H. Cockayne G., Hetherington, C.J.D., Doole, R.C., Hosokawa, F., Hartel, P. and Haider, M.: A Cs corrected HRTEM: Initial applications in materials science. JEOL News 37E, 2 (2002).Google Scholar
75Sharma, R. and Crozier, P.A. Environmental transmission electron microscopy in nanotechnology, in Handbook of Microscopy for Nanotechnology, edited by Yao, N. and Wang, Z.L. (Kluwer Academic Publishers, Boston/New York/London, 2005, 1974) p. 531.CrossRefGoogle Scholar