Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T08:49:50.990Z Has data issue: false hasContentIssue false

Ag/epoxy nanocomposite film with aligned Ag nanowires and their polarization property

Published online by Cambridge University Press:  06 September 2011

Jinyang Feng*
Affiliation:
State Key Laboratory of Silicate Materials for Architectures (Wuhan University of Technology), Ministry of Education, Hubei 430070, Peoples Republic of China
Xiao Ma
Affiliation:
State Key Laboratory of Silicate Materials for Architectures (Wuhan University of Technology), Ministry of Education, Hubei 430070, Peoples Republic of China
Haibo Mao
Affiliation:
State Key Laboratory of Silicate Materials for Architectures (Wuhan University of Technology), Ministry of Education, Hubei 430070, Peoples Republic of China
Baoshun Liu
Affiliation:
State Key Laboratory of Silicate Materials for Architectures (Wuhan University of Technology), Ministry of Education, Hubei 430070, Peoples Republic of China
Xiujian Zhao*
Affiliation:
State Key Laboratory of Silicate Materials for Architectures (Wuhan University of Technology), Ministry of Education, Hubei 430070, Peoples Republic of China
*
a)Address all correspondence to these authors. e-mail: fjy@whut.edu.cn
Get access

Abstract

The metal nanoparticles dispersed in matrices of composite material are able to apply in different technologies based on their peculiarity. This article reports the preparation of Ag/epoxy nanocomposite film with aligned Ag nanowires coated on glass substrate by multistep processing including synthesis of Ag nanowires by seed-mediated method, dispersion of Ag nanowires in the epoxy resin, and stretching to form the Ag/epoxy nanocomposite film. The results showed that Ag nanowires had been well aligned in the direction of stretching, both in the surface layer and in the internal of the film. Meanwhile, the Ag/epoxy nanocomposite film showed an obviously infrared polarization property in a broad wavelength range from 1600 to 2600 nm, with transmittance over 70%. The mechanisms for the orientation of Ag nanowires and the generation of polarization property of the films were discussed, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Baba, K., Shiraishi, K., Obi, K., Kataoka, T., and Kawakami, S.: Optical properties of very thin metal films for laminated polarizers. Appl. Opt. 27, 2554 (1988).CrossRefGoogle ScholarPubMed
2.Shiraishi, K., Hatakeyama, H., Ishibashi, N., and Matsumura, K.: Metal/semiconductor compound ultrathin films for laminated optical polarizers. Appl. Phys. Lett. 64, 957 (1994).Google Scholar
3.Guo, J.P. and Brady, D.: Fabrication of thin film micropolarizer arrays for visible imaging polarimetry. Appl. Opt. 39, 1486 (2000).Google Scholar
4.Saito, M., Kirihara, M., and Taniguchi, T.: Micropolarizer made of the anodized alumina film. Appl. Phys. Lett. 55, 607 (1989).Google Scholar
5.Sau, T.K., Rogach, A.L., Jackel, F., Klar, T.A., and Feldmann, J.: Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv. Mater. 22, 1805 (2010).Google Scholar
6.Moores, A. and Goettmann, F.: The plasmon band in noble metal nanoparticles: An introduction to theory and applications. N. J. Chem. 30, 1121 (2006).Google Scholar
7.Burda, C., Chen, X.B., Narayanan, R., and El-Sayed, M.A.: Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025 (2005).CrossRefGoogle ScholarPubMed
8.Sandrock, M.L., Pibel, C.D., Geiger, F.M., and Foss, C.A. Jr.: Synthesis and second-harmonic generation studies of noncentrosymmetric gold Nanostructures. J. Phys. Chem. B 103, 2668 (1999).Google Scholar
9.Nikolajsen, T., Leosson, K., and Bozhevolyni, S.I.: Surface plasmon polariton based modulators and switches operating at telecom wavelengths. Appl. Phys. Lett. 85, 5833 (2004).Google Scholar
10.Raschke, G., Kowarik, S., Franzl, T., Sonnichsen, C., Klar, T.A., Feldmann, J., Nichtl, A., and Kulrzinger, K.: Biomolecular recognition based on single gold nanoparticle light scattering. Nano Lett. 3, 935 (2003).Google Scholar
11.Kelly, K.L., Coronado, E., Zhao, L.L., and Schatz, G.C.: The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668 (2003).Google Scholar
12.Sun, Y.G. and Xia, Y.N.: Nanoparticles shape-controlled synthesis of gold and silver. Science 298, 2176 (2002).CrossRefGoogle ScholarPubMed
13.Jin, R.C., Cao, Y.C., Hao, E.C., Metraux, G.S., Schatz, G.C., and Mirkin, C.A.: Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425, 487 (2003).CrossRefGoogle ScholarPubMed
14.Gao, Y., Jiang, P., Liu, D.F., Yuan, H.J., Yan, X.Q., Zhou, Z.P., Wang, J.X., Song, L., Liu, L.F., Zhou, W.Y., Wang, G., Wang, C.Y., and Xie, S.S.: Synthesis, characterization and self-assembly of silver nanowires. Chem. Phys. Lett. 380, 146 (2003).CrossRefGoogle Scholar
15.Skinner, K., Dwyer, C., and Washburn, S.: Selective functionalization of arbitrary nanowires. Nano Lett. 6, 2758 (2006).CrossRefGoogle ScholarPubMed
16.Zhao, S.Y., Roberge, H., Yelon, A., and Veres, T.: New application of AAO template: A mold for nanoring and nanocone arrays. J. Am. Chem. Soc. 128, 12352 (2006).CrossRefGoogle ScholarPubMed
17.Smith, P.A., Nordquist, C.D., Jackson, T.N., Mayer, T.S., Martin, B.R., Mbindyo, J., and Mallouk, T.E.: Electric-field assisted assembly and alignment of metallic nanowires. Appl. Phys. Lett. 77, 1399 (2000).Google Scholar
18.Huang, Y., Duan, X., Cui, Y., Lauhon, L.J., Kim, K.H., and Lieber, C.M.: Logic gates and computation from assembled nanowire building blocks. Science 294, 1313 (2001).Google Scholar
19.Auvray, S., Derycke, V., Goffman, M., Filoramo, A., Jost, O., and Bourgoin, J.P.: Chemical optimization of self-assembled carbon nanotube transistors. Nano Lett. 5, 451 (2005).Google Scholar
20.Yu, G.H., Cao, A.Y., and Lieber, C.M.: Large-area blown bubble films of aligned nanowires and carbon nanotubes. Nat. Nanotechnol. 2, 372 (2007).Google Scholar
21.Skillman, D.C. and Berry, C.R.: Effect of particle shape on the spectral absorption of colloidal silver in gelatin. J. Chem. Phys. 48, 3297 (1968).Google Scholar
22.Grossman, D.G., Vandegrift, L.R., Williams, J.M., and Whitbred, G.N.: Method of making a polarizing glass, US6536236, 2003.Google Scholar
23.Borrelli, N.F., and Trotter, D.M.: Method of making polarizing glasses, US7104090, 2006.Google Scholar
24.Borrelli, F.N., Mann, G.L., and Whitbred, G.N.: Broadband contrast polarizing glass, US6221480, 2001.Google Scholar
25.Wang, Q.Q., Han, J.B., Gong, H.M., Chen, D.J., Zhao, X.J., Feng, J.Y., and Ren, J.J.: Linear and nonlinear optical properties of Ag nanowire polarizing glass. Adv. Funct. Mater. 16, 2405 (2006).CrossRefGoogle Scholar
26.Feng, J.Y., Zhao, X.J., Liu, B.S., and Zhou, X.D.: Microstructural characterization and optical polarization of glass with needle-like micro–nano silver oriented arrangement. Opt. Commun. 281, 5041 (2008).CrossRefGoogle Scholar
27.Lin, C.G., Tao, H.Z., Feng, J.Y., Gong, L.J., Pan, R.K., and Zhao, X.J.: Preparation of polarizing glasses of large size based on the directional alignment of crystal nucleus. Mater. Lett. 62, 4100 (2008).CrossRefGoogle Scholar
28.Matsuda, S., Yasuda, Y., and Ando, S.: Fabrication of polyimide-blend thin films containing uniformly oriented silver nanorods and their use as flexible linear polarizers. Adv. Mater. 17, 2221 (2005).Google Scholar
29.Dirix, Y., Bastiaansen, C., Caseri, W., and Smith, P.: Oriented pearl-necklace arrays of metallic nanoparticles in polymers: A new route toward polarization-dependent color filters. Adv. Mater. 11, 223 (1999).3.0.CO;2-J>CrossRefGoogle Scholar
30.van der Zande, B.M.I., Page`s, L., Hikmet, R.A.M., and van Blaaderen, A.: Optical properties of aligned rod-shaped gold particles dispersed in poly(vinyl alcohol) films. J. Phys. Chem. B 103, 5761 (1999).CrossRefGoogle Scholar
31.Wilson, O., Wilson, G.J., and Mulvaney, P.: Laser writing in polarized silver nanorod films. Adv. Mater. 14, 1000 (2002).3.0.CO;2-E>CrossRefGoogle Scholar
32.Juste, J.P., González, B.R., Mulvaney, P., and Liz-Marzán, L.M.: Optical control and patterning of gold-nanorod-poly(vinyl alcohol) nanocomposite films. Adv. Funct. Mater. 15, 1065 (2005).CrossRefGoogle Scholar
33.Chen, D.L. and Gao, L.: Large-scale growth and end-to-end assembly of silver nanorods by PVP-directed polyol process. J. Cryst. Growth 264, 216 (2004).CrossRefGoogle Scholar
34.Sun, Y.G., Mayers, B., Herricks, T., and Xia, Y.N.: Polyol synthesis of uniform silver nanowires: A plausible growth mechanism and the supporting evidence. Nano Lett. 3, 955 (2003).Google Scholar
35.Huang, H.H., Ni, X.P., Loy, G.L., Chew, C.H., Tan, K.L., Loh, F.C., Deng, J.F., and Xu, G.Q.: Photochemical formation of silver nanoparticles in Poly(N-vinylpyrrolidone). Langmuir 12, 909 (1996).Google Scholar
36.Egon Matijevic: Preparation and properties of uniform size colloids. Chem. Mater. 5, 412 (1993).CrossRefGoogle Scholar
37.Silvert, P.Y., Urbina, R.H., and Elhsissen, K.T.: Preparation of colloidal silver dispersions by the polyol process: Mechanism of particle formation. J. Mater. Chem. 7, 293 (1997).CrossRefGoogle Scholar
38.Sun, Y.G. and Xia, Y.N.: Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. Adv. Mater. 14, 833 (2002).3.0.CO;2-K>CrossRefGoogle Scholar
39.Sun, Y.G., Yin, Y.D., Mayers, B.T., Herricks, T., and Xia, Y.N.: Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and Poly(Vinyl Pyrrolidone). Chem. Mater. 14, 4736 (2002).CrossRefGoogle Scholar
40.Tsuji, M., Matsumoto, K., Miyamae, N., Tsuji, T., and Zhang, X.: Rapid preparation of silver nanorods and nanowires by a microwave-polyol method in the presence of Pt catalyst and polyvinylpyrrolidone. Cryst. Growth Des. 7, 311 (2007).Google Scholar
41.Buffeteau, T., Desbat, B., and Bokobza, L.: The use of near-infra-red spectroscopy coupled to the polarization modulation technique to investigate molecular orientation in uniaxially stretched polymers. Polymer 36, 4339 (1995).Google Scholar
42.Davis, K.M. and Tomozawa, M.: An infrared spectroscopic study of water-related species in silica glasses. J. Non-Cryst. Solids 201, 177 (1996).CrossRefGoogle Scholar
43.Saito, M. and Miyagi, M.: Micropolarizer using anodized alumina with implanted metallic columns: Theoretical analysis. Appl. Opt. 28, 3529 (1989).Google Scholar
44.Saito, M. and Miyagi, M.: Anisotropic optical loss and birefringence of anodized alumina film. J. Opt. Soc. Am. A 6, 1895 (1989).CrossRefGoogle Scholar