Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T04:23:39.310Z Has data issue: false hasContentIssue false

Advances in the growth and characterization of Ge quantum dots and islands

Published online by Cambridge University Press:  01 December 2005

J-M. Baribeau*
Affiliation:
Institute for Microstructural Sciences, National Research Council Canada, Ottawa, Ontario, K1A 0R6, Canada
N.L. Rowell
Affiliation:
Institute for National Measurements Standards, National Research Council Canada, Ottawa, Ontario, K1A 0R6, Canada
D.J. Lockwood
Affiliation:
Institute for Microstructural Sciences, National Research Council Canada, Ottawa, Ontario, K1A 0R6, Canada
*
a)Address all correspondence to this author. e-mail: jean-marc.baribeau@nrc-cnrc.gc.ca This paper was selected as the Outstanding Meeting Paper for the 2004 MRS Fall Meeting Symposium F Proceedings, Vol. 832.
Get access

Abstract

We review recent advances in the growth of Si1−xGex islands and Ge dots on (001) Si. We first discuss the evolution of the island morphology with Si1−xGex coverage and the effect of growth parameters or post-growth annealing on the shape of the islands and dots. We outline some of the structural and optical properties of Si1−xGex islands and assess progress in the determination of their composition and strain distribution. Finally, we discuss various approaches currently being investigated to engineer Si1−xGex quantum dots and in particular to control their size, density, and spatial distribution. For example, we show how C pre-deposition on Si (001) can influence the nucleation and growth of Ge islands.

Type
Outstanding Meeting Paper—Review
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Eaglesham, D.J. and Cerullo, M.: Dislocation-free Stranski– Krastanow growth of Ge on Si(100). Phys. Rev. Lett. 64, 1943 (1990).CrossRefGoogle ScholarPubMed
2.Mo, Y-W., Savage, D.E., Swartzentruber, B.S. and Lagally, M.G.: Kinetic pathway in Stranski–Krastanov growth of Ge on Si(001). Phys. Rev. Lett. 65, 1020 (1990).CrossRefGoogle ScholarPubMed
3.Asaro, R.J. and Tiller, W.A.: Interface morphology development during stress-corrosion cracking I. Via surface diffusion. Metall. Trans. A 3, 1789 (1972).CrossRefGoogle Scholar
4.Grinfeld, M.A.: Instability of the separation boundary between a non-hydrostatically stressed elastic body and a melt. Dokl. Akad. Nauk SSSR. 290, 1358 (1986).Google Scholar
5.Teichert, B.: Self-organization of nanostructures in semiconductor heteroepitaxy. Phys. Rep. 365, 335 (2002).CrossRefGoogle Scholar
6.Zhang, Z. and Lagally, M.G.: Morphological organization in epitaxial growth and removal, in Series on Directions in Condensed Matter Physics, Vol. 14, edited by Zhang, Z. and Lagally, M.G. (World Scientific, Singapore, 1998), p. 498.Google Scholar
7.Brunner, K.: Si/Ge nanostructures. Rep. Prog. Phys. 65, 27 (2002).CrossRefGoogle Scholar
8.Baribeau, J-M., Rowell, N.L. and Lockwood, D.J.: Self-assembled Si1−xGex dots and islands, in Self-Organized Nanoscale Materials, edited by Adachi, M. and Lockwood, D.J. (Kluwer/Plenum, New York, 2005), p. 1.Google Scholar
9.Stangl, A., Holý, V. and Bauer, G.: Structural properties of self-organized semiconductor nanostructures. Rev. Mod. Phys. 76, 725 (2004).CrossRefGoogle Scholar
10.Drucker, J. and Chapparo, S.: Diffusional narrowing of Ge on Si(100) coherent island quantum dot size distributions. Appl. Phys. Lett. 71, 614 (1997).CrossRefGoogle Scholar
11.Liao, X.Z., Zou, J., Cockayne, D.J.H., Jiang, Z.M. and Wang, X.: Extracting composition and alloying information of coherent Ge(Si)/Si(001) islands from [001] on-zone bright-field diffraction contrast images. J. Appl. Phys. 90, 2725 (2001).CrossRefGoogle Scholar
12.Liao, X.Z., Zou, J., Cockayne, D.J.H., Wan, J., Jiang, Z.M., Jin, G. and Wang, K.L.: Annealing effects on the microstructure of Ge/Si(001) quantum dots. Appl. Phys. Lett. 79, 1258 (2001).CrossRefGoogle Scholar
13.Cho, B., Schwarz-Selinger, T., Ohmori, K., Cahill, D.G. and Greene, J.E.: Effect of growth rate on the spatial distributions of dome-shaped Ge islands on Si(001). Phys. Rev. B 66, 195407 (2002).CrossRefGoogle Scholar
14.Rzaev, M.M., Burbaev, T.M., Kurbatov, V.A., Melnik, N.N., Muhlberger, M., Pogosov, A.O., Schäffler, F., Sibeldin, N.N., Tsvetkov, V.A., Werner, P., Zakharov, N.D. and Zavaritskaya, T.N.: Photoluminescence of self-assembled Ge islands grown by Si MBE at low temperatures. Phys. Status Solidi 4, 1262 (2003).CrossRefGoogle Scholar
15.Boscherini, F., Capellini, G., Di Gaspare, L., De Seta, M., Rosei, F., Sgarlata, A., Motta, N. and Mobilio, S.: Ge–Si intermixing in Ge quantum dots on Si. Thin Solid Films 380, 173 (2000).CrossRefGoogle Scholar
16.Dentel, D., Vescan, L., Chrétien, O. and Holländer, B.: Influence of molecular hydrogen on Ge island nucleation on Si(001). J. Appl. Phys. 88, 5113 (2000).CrossRefGoogle Scholar
17.Kamins, T.I., Carr, E.C., Williams, R.S. and Rosner, S.J.: Deposition of three-dimensional Ge islands on Si(001) by chemical vapor deposition at atmospheric and reduced pressures. J. Appl. Phys. 81, 211 (1997).CrossRefGoogle Scholar
18.Seta, M.D., Capellini, G., Evangelisti, F. and Spinella, C.: Intermixing-promoted scaling of Ge/Si(100) island sizes. J. Appl. Phys. 92, 614 (2002).CrossRefGoogle Scholar
19.Huang, W.T., Deng, N., Chen, P.Y., Luo, G.L. and Qian, P.X.: Self-organized growth of Ge quantum dots by UHV-CVD. Microelectron. Technol. 41, 17 (2004).Google Scholar
20.Lee, S.W., Chen, L.J., Chen, P.S., Tsai, M-J., Liu, C.W., Chien, T.Y. and Chia, C.T.: Self-assembled nanorings in Si-capped Ge quantum dots on (001). Appl. Phys. Lett. 83, 283 (2003).CrossRefGoogle Scholar
21.Rastelli, A., Kummer, M. and Känel, H. v.: Reversible shape evolution of Ge islands on Si(001). Phys. Rev. Lett. 87, 256101 (2001).CrossRefGoogle ScholarPubMed
22.Vailionis, A., Cho, B., Glass, G., Desjardins, P., Cahill, D.G. and Greene, J.E.: Pathway for the strain-driven two-dimensional to three-dimensional transition during growth of Ge on Si(001). Phys. Rev. Lett. 85, 3672 (2000).CrossRefGoogle ScholarPubMed
23.Liu, C.P., Gibson, J.M., Cahill, D.G., Kamins, T.I., Basile, D.P. and Williams, R.S.: Strain evolution in coherent Ge/Si islands. Phys. Rev. Lett. 84, 1958 (2000).CrossRefGoogle ScholarPubMed
24.Ross, F.M., Tromp, R.M. and Reuter, M.C.: Transition states between pyramids and domes during Ge/Si island growth. Science 286, 1931 (1999).CrossRefGoogle ScholarPubMed
25.Medeiros-Ribeiro, G., Bratkovski, M., Kamins, T.I., Ohlberg, D.A.A. and Williams, R.S.: Shape transition of germanium nanocrystals on silicon (001) surface from pyramids to domes. Science 279, 353 (1998).CrossRefGoogle ScholarPubMed
26.Rudd, R.E., Briggs, G.A.D., Sutton, A.P., Medeiros-Ribeiro, G. and Williams, R.S.: Equilibrium model of bimodal distributions of epitaxial island growth. Phys. Rev. Lett. 90, 146101 (2003).CrossRefGoogle ScholarPubMed
27.Tersoff, J. and LeGoues, F.K.: Competing relaxation mechanisms in strained layers. Phys. Rev. Lett. 72, 3570 (1994).CrossRefGoogle ScholarPubMed
28.Zhang, Y.W. and Bower, A.F.: Three-dimensional analysis of shape transitions in strained-heteroepitaxial islands. Appl. Phys. Lett. 78, 2706 (2001).CrossRefGoogle Scholar
29.Shchukin, V.A., Ledentsov, N.N., Kop’ev, P.S. and Bimberg, D.: Spontaneous ordering of arrays of coherent strained islands. Phys. Rev. Lett. 75, 2968 (1995).CrossRefGoogle ScholarPubMed
30.Shklyaev, O.E., Beck, M.J., Asta, M., Miksis, M.J. and Voorhees, P.W.: Role of strain-dependent surface energies in Ge/Si(100) island formation. Phys. Rev. Lett. 94, 176102 (2005).CrossRefGoogle ScholarPubMed
31.Lu, G-H. and Liu, F.: Towards quantitative understanding of formation and stability of Ge hut islands on Si(001). Phys. Rev. Lett. 94, 176103 (2005).CrossRefGoogle ScholarPubMed
32.Costantini, G., Rastelli, A., Manzano, C., Songmuang, R., Schmidt, O.G., Kern, K. and Känel, H.V.: Universal shapes of self-organized semiconductor quantum dots: Striking similarities between InAs/GaAs(001) and Ge/Si(001). Appl. Phys. Lett. 85, 5673 (2004).CrossRefGoogle Scholar
33.Costantini, G., Rastelli, A., Manzano, C., Acosta-Diaz, P., Katsaros, G., Songmuang, R., Schmidt, O.G., Kanel, H. v. and Kern, K.: Pyramids and domes in the InAs/GaAs(0 0 1) and Ge/Si(0 0 1) systems. J. Cryst. Growth 278, 38 (2005).CrossRefGoogle Scholar
34.Sutter, E., Sutter, P. and Bernard, J.E.: Extended shape evolution of low mismatch Si1−xGex alloy islands on Si(100). Appl. Phys. Lett. 84, 2262 (2004).CrossRefGoogle Scholar
35.Deng, N., Chen, P.Y. and Li, Z.J.: Self-assembled SiGe islands with uniform shape and size by controlling Si concentration in islands. J. Cryst. Growth 263, 21 (2004).CrossRefGoogle Scholar
36.Floro, J.A., Chason, E., Twesten, R.D., Hwang, R.Q. and Freund, L.B.: SiGe coherent islanding and stress relaxation in the high mobility regime. Phys. Rev. Lett. 79, 3946 (1997).CrossRefGoogle Scholar
37.Walther, T., Cullis, A.G., Norris, D.J. and Hopkinson, M.: Nature of the Stranski-Krastanow transition during epitaxy of InGaAs on GaAs. Phys. Rev. Lett. 86, 2381 (2001).CrossRefGoogle ScholarPubMed
38.Cullis, A.G., Norris, D.J., Walther, T., Migliorato, M.A. and Hopkinson, M.: Stranski–Krastanow transition and epitaxial island growth. Phys. Rev. B 66, 081305 (2002).CrossRefGoogle Scholar
39.Tu, Y. and Tersoff, J.: Origin of apparent critical thickness for island formation in heteroepitaxy. Phys. Rev. Lett. 93, 216101 (2004).CrossRefGoogle ScholarPubMed
40.Liao, X.Z., Zou, J., Cockayne, D.J.H., Qin, J., Jiang, Z.M., Wang, X. and Leon, R.: Strain relaxation by alloying effects in Ge islands grown on Si(001). Phys. Rev. B 60, 15605 (1999).CrossRefGoogle Scholar
41.Sonnet, P. and Kelires, P.C.: Physical origin of trench formation in Ge/Si(100) islands. Appl. Phys. Lett. 85, 203 (2004).CrossRefGoogle Scholar
42.Chaparro, S.A., Zhang, Y., Drucker, J., Chandrasekhar, D. and Smith, D.J.: Evolution of Ge/Si(100) islands: Island size and temperature dependence. J. Appl. Phys. 87, 245 (2000).CrossRefGoogle Scholar
43.Zhang, Y. and Drucker, J.: Annealing-induced Ge/Si(100) island evolution. J. Appl. Phys. 93, 9583 (2003).CrossRefGoogle Scholar
44.Floro, J.A., Sinclair, M.B., Chason, E., Freund, L.B., Twesten, R.D., Hwang, R.Q. and Lucadamo, G.A.: Novel SiGe island coarsening kinetics: Ostwald ripening and elastic interactions. Phys. Rev. Lett. 84, 701 (2000).CrossRefGoogle ScholarPubMed
45.Liu, P., Zhang, Y.W. and Lu, C.: Coarsening kinetics of heteroepitaxial islands in nucleationless Stranski–Krastanov growth. Phys. Rev. B 68, 035402 (2003).CrossRefGoogle Scholar
46.Kamins, T.I., Medeiros-Ribeiro, G., Ohlberg, D.A.A. and Williams, R.S.: Evolution of Ge islands on Si(001) during annealing. J. Appl. Phys. 85, 1159 (1999).CrossRefGoogle Scholar
47.Capellini, G., Seta, M.D. and Evangelisti, F.: Ge/Si(100) islands: Growth dynamics versus growth rate. J. Appl. Phys. 93, 291 (2003).CrossRefGoogle Scholar
48.Capellini, G., De Seta, M. and Evangelisti, F.: Influence of the growth parameters on self-assembled Ge islands on Si(100). Mater. Sci. Eng. B 89, 184 (2002).CrossRefGoogle Scholar
49.Rastelli, A., Muller, E. and Känel, H. v.: Shape preservation of Ge/Si(001) islands during Si capping. Appl. Phys. Lett. 80, 1438 (2002).CrossRefGoogle Scholar
50.Daruka, I. and Tersoff, J.: Existence of shallow facets at the base of strained epitaxial islands. Phys. Rev. B 66, 132104 (2002).CrossRefGoogle Scholar
51.Daruka, I., Tersoff, J. and Barabási, A-L.: Shape transition in growth of strained islands. Phys. Rev. Lett. 82, 2753 (1999).CrossRefGoogle Scholar
52.Denker, U., Rastelli, A., Stoffel, M., Tersoff, J., Katsaros, G., Costantini, G., Kern, K., Jin-Phillipp, N.Y., Jesson, D.E. and Schmidt, O.G.: Lateral motion of SiGe islands driven by surface-mediated alloying. Phys. Rev. Lett. 94, 216103 (2005).CrossRefGoogle ScholarPubMed
53.Grinfeld, M.A. and Srolovitz, D.J.: Stress driven morphological instabilities and islanding of epitaxial films, in Properties of Strained and Relaxed Silicon Germanium, Vol. 12, edited by Kasper, E. (INSPEC, London, U.K., 1995) pp. 316.Google Scholar
54.Gao, H.: Some general properties of stress-driven surface evolution in a heteroepitaxial thin film structure. J. Mech. Phys. Solids 42, 741 (1994).CrossRefGoogle Scholar
55.Tu, K-N., Mayer, J.W. and Feldman, L.C.: Electronic Thin Film Science for Electrical Engineers and Materials Scientists, (Macmillan, New York, 1992), Appendix E.Google Scholar
56.Baribeau, J-M., Delâge, A., Janz, S., Lafontaine, H., Lockwood, D.J., McCaffrey, J.P., Moisa, S., Rowell, N.L. and Xu, D-X.: Wavy SiGe/Si superlattices: Structural and optical properites and application to near infrared light detection, in Advanced Luminescent Materials and Quantum Confinement, edited by Cahay, M., Bandyopadhyay, S., Lockwood, D.J., Leburton, J.P., Koshida, N., Meyyappan, M., and Sakamoto, T. (The Electrochemical Society, Pennington, NJ, 1999), p. 45.Google Scholar
57.Schmidt, O.G., Jin-Phillipp, N.Y., Lange, C., Denker, U., Eberl, K., Schreiner, R., Grabeldinger, H. and Schweizer, H.: Long-range ordered lines of self-assembled Ge islands on a flat Si (001) surface. Appl. Phys. Lett. 77, 4139 (2000).CrossRefGoogle Scholar
58.Stangl, J., Roch, T., Bauer, G., Kegel, I., Metzger, T.H., Schmidt, O.G., Eberl, K., Kienzle, O. and Ernst, F.: Vertical correlation of SiGe islands in SiGe/Si superlattices: X-ray diffraction versus transmission electron microscopy. Appl. Phys. Lett. 77, 3953 (2000).CrossRefGoogle Scholar
59.Thanh, V. Le and Yam, V.: Superlattices of self-assembled Ge/Si(001) quantum dots. Appl. Surf. Sci. 212–213, 296 (2003).CrossRefGoogle Scholar
60.Springholz, G.: Three-dimensional stacking of self-assembled quantum dots in multilayer structures. C. R. Phys. 6, 89 (2005).CrossRefGoogle Scholar
61.Sutter, E., Sutter, P. and Vescan, L.: Organization of self-assembled quantum dots in SiGe/Si multilayers: Effect of strain and substrate curvature. Mater. Sci. Eng. B 89, 196 (2002).CrossRefGoogle Scholar
62.Tersoff, J., Teichert, C. and Lagally, M.G.: Self-organization in growth of quantum dot superlattices. Phys. Rev. Lett. 76, 1675 (1996).CrossRefGoogle ScholarPubMed
63.Stangl, J., Daniel, A., Holý, V., Roch, T., Bauer, G., Kegel, I., Metzger, T.H., Wiebach, T., Schmidt, O.G. and Eberl, K.: Strain and composition distribution in uncapped SiGe islands from x-ray diffraction. Appl. Phys. Lett. 79, 1474 (2001).CrossRefGoogle Scholar
64.Hesse, A., Stangl, J., Holý, V., Roch, T., Bauer, G., Schmidt, O.G., Denker, U. and Struth, B.: Effect of overgrowth on shape, composition and strain of SiGe islands on Si(001). Phys. Rev. B 66, 085321 (2002).CrossRefGoogle Scholar
65.Schulli, T.U., Stangl, J., Zhong, Z., Lechner, R.T., Sztucki, M., Metzger, T.H. and Bauer, G.: Direct determination of strain and composition profiles in SiGe islands by anomalous x-ray diffraction at high momentum transfer. Phys. Rev. Lett. 90, 066105 (2003).CrossRefGoogle ScholarPubMed
66.Stangl, J., Hesse, A., Holý, V., Zhong, Z., Bauer, G., Denker, U. and Schmidt, O.G.: Effect of overgrowth temperature on shape, strain, and composition of buried Ge islands deduced from x-ray diffraction. Appl. Phys. Lett. 82, 2251 (2003).CrossRefGoogle Scholar
67.Kirfel, O., Muller, E., Grützmacher, D., Kern, K., Hesse, A., Stangl, J., Holý, V. and Bauer, G.: Shape and composition change of Ge dots due to Si capping. Appl. Surf. Sci. 224, 139 (2004).CrossRefGoogle Scholar
68.Darhuber, A.A., Holý, V., Schittenhelm, P., Strangl, J., Kegel, I., Kovats, Z., Metzger, T.H., Bauer, G., Abstreiter, G. and Grubel, G.: Structural characterization of self-assembled Ge dot multilayers by x-ray diffraction and reflectivity methods. Physica E 2, 789 (1998).CrossRefGoogle Scholar
69.Magalhaes-Paniago, R., Medeiros-Ribeiro, G., Malachias, A., Kycia, S., Kamins, T. I. and Williams, R. S.: Direct evaluation of composition profile, strain relaxation, and elastic energy of Ge:Si(001) self-assembled islands by anomalous x-ray scattering. Phys. Rev. B 66, 245312/1 (2002).CrossRefGoogle Scholar
70.Boscherini, F.: X-ray absorption studies of atomic environments in semiconductor nanostructures. Nucl. Instrum.Meth. Phys. Res. B 199, 169 (2003).CrossRefGoogle Scholar
71.Boscherini, F., Capellinin, G., Gaspare, L.D., Rosei, F., Motta, N. and Mobilio, S.: Ge-Si intermixing in Ge quantum dots on Si(001) and Si(111). Appl. Phys. Lett. 76, 682 (2000).CrossRefGoogle Scholar
72.Huang, C.J., Li, D.Z., Yu, Z., Cheng, B.W., Yu, J.Z. and Wang, Q.M.: Atomic-force-microscopy investigation of the formation and evolution of Ge islands on GexSi1−x strained layers. Appl. Phys. Lett. 77, 391 (2000).CrossRefGoogle Scholar
73.Cazayous, M., Groenen, J., Demangeot, F., Sirvin, R., Caumont, M., Remmele, T., Albrecht, M., Christiansen, S., Becker, M., Strunk, H.P. and Wawra, H.: Strain and composition in self-assembled SiGe islands by Raman spectroscopy. J. Appl. Phys. 91, 6772 (2002).CrossRefGoogle Scholar
74.Yukhymchuk, V.O., Yaremko, A.M., Valakh, M.Y., Novikov, A.V., Mozdor, E.V., Lytvyn, P.M., Krasilnik, Z.F., Klad’ko, V.P., Dzhagan, V.M., Mestres, N. and Pascual, J.: Theoretical and experimental investigations of single- and multilayer structures with SiGe nanoislands. Mater. Sci. Eng. C 23, 1027 (2003).CrossRefGoogle Scholar
75.Magidson, V., Regelman, D.V., Beserman, R. and Dettmer, K.: Evidence of Si presence in self-assembled Ge islands deposited on a Si(001) substrate. Appl. Phys. Lett. 73, 1044 (1998).CrossRefGoogle Scholar
76.Floyd, M., Zhang, Y., Driver, K.P., Drucker, J., Crozier, P.A. and Smith, D.J.: Nanometer-scale composition measurements of Ge/Si islands. Appl. Phys. Lett. 82, 1473 (2003).CrossRefGoogle Scholar
77.Denker, U., Stoffel, M. and Schmidt, O.G.: Probing the lateral composition profile of self-assembled islands. Phys. Rev. Lett. 90, 196102 (2003).CrossRefGoogle ScholarPubMed
78.Denker, U., Sigg, H. and Schmidt, O.G.: Composition of self assembled Ge hut clusters. Mater. Sci. Eng. B 101, 89 (2003).CrossRefGoogle Scholar
79.Sinha, S.K., Sirote, E.B., Garoff, S. and Stanley, H.B.: X-ray and neutron scattering from rough surfaces. Phys. Rev. B 38, 2297 (1988).CrossRefGoogle ScholarPubMed
80.Holy, V., Pietsch, U. and Baumbach, T.: High Resolution X-ray Scattering from Thin Films and Multilayers (Springer, Berlin, Germany, 1999) p. 256.Google Scholar
81.Kegel, I., Metzger, H., Lorke, A., Peisl, J., Stangl, A., Bauer, G. and Nordlund, K.: Determination of strain fields and composition of self-organized quantum dots using x-ray diffraction. Phys. Rev. B 63, 035318 (2001).CrossRefGoogle Scholar
82.Malachias, A., Kycia, S., Medeiros-Ribeiro, G., Magalhaes-Paniago, R., Kamins, T.I. and Williams, R.S.: 3D composition of epitaxial nanocrystals by anomalous x-ray diffraction: Observation of a Si-rich core in Ge domes on Si(100). Phys. Rev. Lett. 91, 176101 (2003).CrossRefGoogle ScholarPubMed
83.Floyd, M., Zhang, Y., Driver, K.P., Drucker, J., Crozier, P.A. and Smith, D.J.: Nanometer-scale composition measurements of Ge/Si(100) islands. Appl. Phys. Lett. 82, 1473 (2003).CrossRefGoogle Scholar
84.Kegel, I., Metzger, H., Lorke, A., Peisl, J., Stangl, A., Bauer, G., Garcia, J.M. and Petroff, P.M.: Nanometer-scale resolution of strain and interdiffusion in self-assembled InAs/GaAs quantum dots. Phys. Rev. Lett. 85, 1694 (2000).CrossRefGoogle ScholarPubMed
85.Baribeau, J-M., Wu, X. and Lockwood, D.J.: JVST B (submitted).Google Scholar
86.Schmidt, O.G. and Eberl, K.: Multiple layers of self-asssembled Ge/Si islands: Photoluminescence, strain fields, material interdiffusion, and island formation. Phys. Rev. B. 61, 13721 (2000).CrossRefGoogle Scholar
87.Schmidt, O.G., Denker, U., Christiansen, S. and Ernst, F.: Composition of self-assembled Ge/Si islands in single and multiple layers. Appl. Phys. Lett. 81, 2614 (2002).CrossRefGoogle Scholar
88.Denker, U., Sigg, H. and Schmidt, O.G.: Intermixing in Ge hut cluster islands. Appl. Surf. Sci. 224, 127 (2004).CrossRefGoogle Scholar
89.Chen, Y. and Washburn, J.: Structural transition in large-lattice-mismatch heteroepitaxy. Phys. Rev. Lett. 77, 4046 (1996).CrossRefGoogle ScholarPubMed
90.Ide, T., Sakai, A. and Shimizu, K.: Nanometer-scale imaging of strain in Ge island on Si(001) surface. Thin Solid Films 357, 22 (1999).CrossRefGoogle Scholar
91.Raiteri, P., Miglio, L., Valentinotti, F. and Celino, M.: Strain maps at the atomic scale below Ge pyramids and domes on a Si substrate. Appl. Phys. Lett. 80, 3736 (2002).CrossRefGoogle Scholar
92.Huang, C.J., Zuo, Y.H., Li, D.Z., Cheng, B.W., Luo, L.P., Yu, J.Z. and Wang, Q.M.: Shape evolution of Ge/Si(001) islands induced by strain-driven alloying. Appl. Phys. Lett. 78, 3881 (2001).CrossRefGoogle Scholar
93.Schülli, T.U., Stangl, J., Zhong, Z., Lechner, R.T., Sztucki, M., Metzger, T.H. and Bauer, G.: Direct determination of strain and composition profiles in SiGe islands by anomalous x-ray diffraction at high momentum transfer. Phys. Rev. Lett. 90, 066105 (2003).CrossRefGoogle ScholarPubMed
94.Fuchs, H.D., Grein, C.H., Alonso, M.I. and Cardona, M.: High-resolution raman spectroscopy of Ge-rich c-Ge1−xSix alloys: Features of the Ge–Ge vibrational modes. Phys. Rev. B 44, 13120 (1991).CrossRefGoogle ScholarPubMed
95.Talochkin, A.B., Markov, V.A., Nikiforov, A.I. and Tiis, S.A.: Optical phonon spectrum of germanium quantum dots. JETP Lett. 70, 288 (1999).CrossRefGoogle Scholar
96.Milekhin, A.G., Nikiforov, A.I., Pchelyakov, O.P., Schulze, S. and Zahn, D.R.T.: Phonons in Ge/Si superlattices with Ge quantum dots. JETP Lett. 73, 461 (2001).CrossRefGoogle Scholar
97.Kamenev, B.V., Grebel, H., Tsybeskov, L., Kamins, T.I., Williams, R.S., Baribeau, J.M. and Lockwood, D.J.: Polarized raman scattering and localized embedded strain in self-organized Si/Ge nanostructures. Appl. Phys. Lett. 83, 5035 (2003).CrossRefGoogle Scholar
98.Talochkin, A.B. and Teys, S.A.: Optical phonons in Ge quantum dots obtained on Si (111). JETP Lett. 75, 264 (2002).CrossRefGoogle Scholar
99.Terashima, K., Tajima, M. and Tatsumi, T.: Near-band-gap photoluminescence of Si1−xGex alloys grown on Si(100) by molecular beam epitaxy. Appl. Phys. Lett. 57, 1925 (1990).CrossRefGoogle Scholar
100.Sturm, J.C., Manoharan, H., Lenchyshyn, L.C., Thewalt, M.L.W., Rowell, N.L., Noël, J-P. and Houghton, D.C.: Well-resolved band-edge photoluminescence of excitons confined in strained Si1−xGex quantum wells. Phys. Rev. Lett. 66, 1362 (1991).CrossRefGoogle ScholarPubMed
101.Lang, D.V., People, R., Bean, J.C. and Sergent, A.M.: Measurement of the band gap of GexSi1−x/Si strained-layer heterostructures. Appl. Phys. Lett. 47, 1333 (1985).CrossRefGoogle Scholar
102.Xiao, X., Liu, C.W., Sturm, J.C., Lenchyshyn, L.C., Thewalt, M.L.W., Gregory, R.B. and Fejes, P.: Quantum confinement effects in strained silicon-germanium alloy quantum wells. Appl. Phys. Lett. 60, 2135 (1992).CrossRefGoogle Scholar
103.Robbins, D.J., Canham, L.T., Barnett, S.J., Pitt, A.D. and Calcott, P.: Near-band-gap photoluminescence from pseudomorphic Si1−xGex single layers on silicon. J. Appl. Phys. 71, 1407 (1992).CrossRefGoogle Scholar
104.Dutartre, D., Brémond, G., Souifi, A. and Benyattou, T.: Excitonic photoluminescence from Si-capped strained Si1−xGex layers. Phys. Rev. B 44, 11525 (1991).CrossRefGoogle ScholarPubMed
105.Rowell, N.L., Noël, J-P., Houghton, D.C., Wang, A., Lenchyshyn, L.C., Thewalt, M.L.W. and Perovic, D.D.: Exciton luminescence in Si1−xGex/Si heterostructures grown by molecular beam epitaxy. J. Appl. Phys. 74, 2790 (1993).CrossRefGoogle Scholar
106.Nöel, J-P., Rowell, N.L., Houghton, D.C. and Perovic, D.D.: Intense photoluminescence between 1.3 and 1.8 μm from strained Si1−xGex alloys. Appi. Phys. Lett. 57, 1037 (1990).CrossRefGoogle Scholar
107.Schmidt, O.G., Lange, C., Eberl, K., Kienzle, O. and Ernst, F.: Formation of carbon-induced germanium dots. Appl. Phys. Lett. 71, 2340 (1997).CrossRefGoogle Scholar
108.Fukatsu, S., Sunamura, H., Shiraki, Y. and Komiyama, S.: Suppression of phonon replica in the radiative recombination of an MBE-grown type-ii Ge/Si quantum dot. Thin Solid Films 321, 65 (1998).CrossRefGoogle Scholar
109.Boucaud, P., Thanh, V.L., Sauvage, S., Debarre, D., Bouchier, D. and Lourtioz, J-M.: Photoluminescence of self-assembled Ge dots grown by ultra-high-vacuum chemical vapor deposition. Thin Solid Films 336, 240 (1998).CrossRefGoogle Scholar
110.Goryll, M., Vescan, L. and Lüth, H.: Morphology and photoluminescence of Ge islands grown on Si(001). Thin Solid Films 336, 244 (1998).CrossRefGoogle Scholar
111.Schmidt, O.G., Lange, C. and Eberl, K.: Photoluminescence study of the 2D–3D growth mode changeover for different Ge/Si island phases. Phys. Status Solidi B 215, 319 (1999).3.0.CO;2-G>CrossRefGoogle Scholar
112.Schmidt, O.G., Lange, C. and Eberl, K.: Photoluminescence study of the initial stages of island formation for Ge pyramids/domes and hut clusters on Si(001). Appl. Phys. Lett. 75, 1905 (1999).CrossRefGoogle Scholar
113.Beyer, A., Müller, E., Sigg, H., Stutz, S., Grützmacher, D., Leifeld, O. and Ensslin, K.: Size control of carbon-induced Ge quantum dots. Appl. Phys. Lett. 77, 3218 (2000).CrossRefGoogle Scholar
114.Schmidt, O.G., Eberl, K. and Rau, Y.: Strain and band-edge alignment in single and multiple layers of self-assembled Ge/Si and GeSi/Si islands. Phys. Rev. B 62, 16715 (2000).CrossRefGoogle Scholar
115.Usami, N. and Shiraki, Y.: Optical investigation of modified Stranski–Krastanov growth mode in the stacking of self-assembled Ge islands. Thin Solid Films 369, 108 (2000).CrossRefGoogle Scholar
116.Gao, F., Huang, C.J., Huang, D.D., Li, J.P., Sun, D.Z., Kong, M.Y., Zeng, Y.P., Li, J.M. and Lin, L.Y.: Changing the size and shape of Ge island by chemical etching. J. Cryst. Growth 231, 17 (2001).CrossRefGoogle Scholar
117.Vescan, L.: Ge nanostructures grown by self-assembly; influence of substrate orientation. J. Phys. C 14, 8235 (2002).Google Scholar
118.Cirlin, G.E., Talalaev, V.G., Zakharov, N.D., Erorov, V.A. and Werner, P.: Room temperature superlinear power dependence of photoluminescence from defect-free Si/Ge quantum dot multilayer strucures. Phys. Status Solidi B 232, R1 (2002).3.0.CO;2-Z>CrossRefGoogle Scholar
119.Berbezier, I., Ronda, A. and Portavoce, A.: SiGe nanostructures: New insights into growth processes. J. Phys. C 14, 8283 (2002).Google Scholar
120.Vescan, L., Stoica, T., Hollander, B., Nassiopoulou, A., Olzierski, A., Raptis, I. and Sutter, E.: Self-assembling of Ge on finite Si(001) areas comparable with the island size. Appl. Phys. Lett. 82, 3517 (2003).CrossRefGoogle Scholar
121.Larsson, M., Elfving, A., Holtz, P-O., Hansson, G.V. and Ni, W-X.: Luminescence study of Si/Ge quantum dots. Physica E 16, 476 (2003).CrossRefGoogle Scholar
122.Makarov, A.G., Ledentsov, N.N., Tsatsal’nikov, A.F., Cirlin, G.E., Egorov, V.A., Usinov, V.M., Zakharov, N.D. and Werner, P.: Optical properties of structures with ultradense arrays of Ge QD’s in a Si matrix. Semiconductors 37, 210 (2003).CrossRefGoogle Scholar
123.Novikov, A.V., Lobanov, D.N., Yablonsky, A.N., Drozdov, Y.N., Vostokov, N.V. and Krasilnik, Z.F.: Photoluminescence of Ge(Si)/Si(001) self-assembled islands in the near infra-red wavelength range. Physica E 16, 467 (2003).CrossRefGoogle Scholar
124.Volpi, F., Peaker, A.R., Hawkins, I.D., Halsall, M.P., Kenway, P.B., Portavoce, A., Ronda, A. and Berbezier, I.: Hole trapping in self-assembled SiGe quantum nanostructures. Mater. Sci. Eng. B 101, 338 (2003).CrossRefGoogle Scholar
125.Nguyen, L.H., LeThanh, V., Debarre, D., Yam, V., Halbwax, M., Kurdi, M. El, Bouchier, D., Rosner, P., Becker, M., Benamara, M. and Strunk, H.P.: Selective epitaxial growth of Ge quantum dots on patterned SiO2/Si(001) surfaces. Appl. Surf. Sci. 224, 134 (2004).CrossRefGoogle Scholar
126.Yam, V., Thanh, V. Le, Debarre, D., Zheng, Y. and Bouchier, D.: Kinetics of Si capping process of Ge/Si(001) quantum dots. Appl. Surf. Sci. 224, 143 (2004).CrossRefGoogle Scholar
127.Chen, W-Y., Chang, W-H., Chou, A-T., Hsu, T-M., Chen, P-S., Pei, Z. and Lai, L-S.: Optical properties of stacked Ge/Si quantum dots with different spacer thickness grown by chemical vapor deposition. Appl. Surf. Sci. 224, 148 (2004).CrossRefGoogle Scholar
128.Nguyen, L.H., Thanh, V. Le, Debarre, D., Yam, V. and Bouchier, D.: Selective growth of Ge quantum dots on chemically prepared SiO2/Si(001) surfaces. Mater. Sci. Eng. B 101, 199 (2003).CrossRefGoogle Scholar
129.Nguyen, L.H., Nguyen-Duc, T.K., Le Thanh, V., F.A. d’Avitaya, and Derrien, J.: Growth and optical properties of Ge/Si quantum dots formed on patterned SiO2/Si(001) substrates. Physica E 23, p. 471 (2004).CrossRefGoogle Scholar
130.Rowell, N.L., Noël, J-P., Houghton, D.C. and Buchanan, M.: Electroluminescence and photoluminescence from Si1−xGex alloys. Appl. Phys. Lett. 58, 957 (1991).CrossRefGoogle Scholar
131.Nöel, J-P., Rowell, N.L., Houghton, D.C., Wang, A. and Perovic, D.D.: Luminescence origins in molecular beam epitaxial Si1−xGex. Appl. Phys. Lett. 61, 690 (1992).CrossRefGoogle Scholar
132.Denker, U., Stoffel, M., Schmidt, O.G. and Sigg, H.: Ge hut cluster luminescence below bulk Ge band gap. Appl. Phys. Lett. 82, 454 (2003).CrossRefGoogle Scholar
133.Boucaud, P., Sauvage, S., Elkurdi, M., Mercier, E., Brunhes, T., Thanh, V.L., Bouchier, D., Kermarrec, O., Campidelli, Y. and Bensahel, D.: Optical recombination from excited states in Ge/Si self-assembled quantum dots. Phys. Rev. B 64, 155310 (2001).CrossRefGoogle Scholar
134.Kamanev, B.V., Baribeau, J-M., Lockwood, D.J. and Tsybeskov, L.: Optical properties of Stranski–Krastanov grown three-dimensional Si/Si1−xGex nanostructures. Physica E 26, 174 (2005).CrossRefGoogle Scholar
135.Lobanov, D.N., Novikov, A.V., Vostokov, N.V., Drozdov, Y.N., Yablonskiy, A.N., Krasilnik, Z.F., Stoffel, M., Denker, U. and Schmidt, O.G.: Growth and photoluminescence of self-assembled islands obtained during the deposition of Ge on a strained SiGe layer. Opt. Mater. 27, 818 (2005).CrossRefGoogle Scholar
136.Stoffel, M., Kar, G.S., Denker, U., Rastelli, A., Sigg, H. and Schmidt, O.G.: Shape, facet evolution and photoluminescence of Ge islands capped with Si at different temperatures. Physica E 23, 421 (2004).CrossRefGoogle Scholar
137.Martinelli, L., Marzegalli, A., Raiteri, P., Bollani, M., Montalenti, F., Miglio, L., Chrastina, D., Isella, G. and Känel, H. v.: Formation of strain-induced Si-rich and Ge-rich nanowires at misfit dislocations in SiGe: A model supported by photoluminescence data. Appl. Phys. Lett. 84, 2895 (2004).CrossRefGoogle Scholar
138.Chen, P.S., Lee, S.W., Peng, Y.H., Liu, C.W. and Tsai, M.J.: Improvement of photoluminescence efficiency in stacked Ge/Si/Ge quantum dots with a thin Si spacer. Phys. Status Solidi 241, 3650 (2004).CrossRefGoogle Scholar
139.Vostokov, N.V., Krasil’nik, Z.F., Lobanov, D.N., Novikov, A.V., Shaleev, M.V. and Yablonsky, A.N.: Influence of the germanium deposition rate on the growth and photoluminescence of Ge(Si)/Si(001) self-assembled islands. Phys. Solid State 47, 38 (2005).CrossRefGoogle Scholar
140.Gaiduk, P.I., Larsen, A.N., Hansen, J.L., Mudryj, A.V., Samtsov, M.P. and Demenschenok, A.N.: Self-assembly of epitaxially grown Ge/Si quantum dots enhanced by as ion implantation. Appl. Phys. Lett. 79, 025 (2001).CrossRefGoogle Scholar
141.Rokhinson, L.P., Tsui, D.C., Benton, J.L. and Xie, Y-H.: Infrared and photoluminescence spectroscopy of p-doped self-assembled Ge dots on Si. Appl. Phys. Lett. 75, 2413 (1999).CrossRefGoogle Scholar
142.Sakamoto, K., Matsuhata, H., Tanner, M.O., Wang, D. and Wang, K.L.: Alignment of Ge three-dimensional islands on faceted Si(001) surfaces. Thin Solid Films 321, 55 (1998).CrossRefGoogle Scholar
143.Liu, F., Tersoff, J. and Lagally, M.G.: Self-organization of steps in growth of strained films on vicinal substrates. Phys. Rev. Lett. 80, 1268 (1998).CrossRefGoogle Scholar
144.Zhu, J-H., Brunner, K. and Abstreiter, G.: Two-dimensional ordering of self-assembled Ge islands on vicinal Si(001) surfaces with regular ripples. Appl. Phys. Lett. 73, 620 (1998).CrossRefGoogle Scholar
145.Kukta, R.V. and Kouris, D.: On the mechanisms of epitaxial island alignment on patterned substrates. J. Appl. Phys. 97, 033527 (2005).CrossRefGoogle Scholar
146.Zhong, Z., Halilovic, A., Muhlberger, M., Schäffler, F. and Bauer, G.: Ge island formation on stripe-patterned Si(001) substrates. Appl. Phys. Lett. 82, 445 (2003).CrossRefGoogle Scholar
147.Chiu, C-h.: Stable and uniform arrays of self-assembled nanocrystalline islands. Phys. Rev. B 69, 165413 (2004).CrossRefGoogle Scholar
148.Xie, Y.H., Samavedam, S.B., Bulsara, M., Langdo, T.A. and Fitzgerald, E.A.: Relaxed template for fabricating regularly distributed quantum dot arrays. Appl. Phys. Lett. 71, 3567 (1997).CrossRefGoogle Scholar
149.Teichert, C., Hofer, C., Lyutovich, K., Bauer, M. and Kasper, E.: Interplay of dislocation network and island arrangement in SiGe films grown on Si(001). Thin Solid Films 380, 25 (2000).CrossRefGoogle Scholar
150.Leroy, F., Eymery, J., Gentile, P. and Fournel, F.: Ordering of Ge quantum dots with buried Si dislocation networks. Appl. Phys. Lett. 80, 3078 (2002).CrossRefGoogle Scholar
151.Shiryaev, S.Y., Pedersen, E.V., Jensen, F., Petersen, J.W., Hansen, J.L. and Larsen, A.N.: Dislocation patterning—A new tool for spatial manipulation of Ge islands. Thin Solid Films 294, 311 (1997).CrossRefGoogle Scholar
152.Voigtlander, B. and Theuerkauf, N.: Ordered growth of Ge islands above a misfit dislocation network in a Ge layer on Si(111). Surf. Sci. 461 L575 (2000).CrossRefGoogle Scholar
153.Perovic, D.D., Weatherly, G.C., Simpson, P.J., Schultz, P.J., Jackman, T.E., Aers, G.C., Noël, J.P. and Houghton, D.C.: Microvoid formation in low-temperature molecular-beam-epitaxy-grown silicon. Phys. Rev. B 43, 14257 (1991).CrossRefGoogle ScholarPubMed
154.Jackman, T.E., Aers, G.C., McCaffrey, J.P., Britton, D., Willtzki, P., Schultz, P.J., Simpson, P.J. and Mascher, P.: Depth profiling of defects in low-temperature MBE-grown silicon, in Positron Annihilation, Proceedings of the 9th International Conference on Positron Annihilation, Materials Science Forum, Vol. 105–110, edited by Kajcsos, Z. and Szeles, C. (Trans Tech Publication, Inc., Zurich, Switzerland, 1992), p. 301.Google Scholar
155.Baribeau, J-M., Wu, X., Lockwood, D.J., Tay, L. and Sproule, G.I.: Low temperature Si growth on Si(001): Impurity incorporation and limiting thickness for epitaxy. J. Vac. Sci. Technol. B 22, 1479 (2004).CrossRefGoogle Scholar
156.Baribeau, J-M., Rowell, N.L. and Lockwood, D.J.: Progress in the growth and characterization of Ge quantum dots and islands, in Group-IV Semiconductor Nanostructures, edited by Tsybeskov, L., Lockwood, D.J., Delerue, C., and Ichikawa, M. (Mater. Res. Soc. Symp. Proc. 832, Warrendale, PA, 2005), p. 93.Google Scholar
157.Kamins, T.I. and Williams, R.S.: Lithographic positioning of self-assembled Ge islands on Si(001). Appl. Phys. Lett. 71, 1201 (1997).CrossRefGoogle Scholar
158.Jin, G., Liu, J.L., Thomas, S.G., Luo, Y.H., Wang, K.L. and Nguyen, B-Y.: Controlled arrangement of self-organized Ge islands on patterned Si (001) substrates. Appl. Phys. Lett. 75, 2752 (1999).CrossRefGoogle Scholar
159.Kamins, T.I., Ohlberg, D.A.A., Williams, R.S., Zhang, W. and Chou, S.Y.: Positioning of self-assembled, single-crystal, germanium islands by silicon nanoimprinting. Appl. Phys. Lett. 74, 1773 (1999).CrossRefGoogle Scholar
160.Kitajima, T., Liu, B. and Leone, S.R.: Two-dimensional periodic alignment of self-assembled Ge islands on patterned Si(001) surfaces. Appl. Phys. Lett. 80, 497 (2002).CrossRefGoogle Scholar
161.Zhong, Z., Halilovic, A., Muhlberger, M., Schäffler, F. and Bauer, G.: Positioning of self-assembled Ge islands on stripe-patterned Si(001) substrates. J. Appl. Phys. 93, 6258 (2003).CrossRefGoogle Scholar
162.Zhong, Z., Halilovic, A., Fromherz, T., Schäffler, F. and Bauer, G.: Two-dimensional periodic positioning of self-assembled Ge islands on prepatterned Si (001) substrates. Appl. Phys. Lett. 82, 4779 (2003).CrossRefGoogle Scholar
163.Zhong, Z., Halilovic, A., Lichtenberger, H., Schäffler, F. and Bauer, G.: Growth of Ge islands on prepatterned Si (001) substrates. Physica E 23, 243 (2004).CrossRefGoogle Scholar
164.Zhong, Z. and Bauer, G.: Site-controlled and size-homogeneous Ge islands on prepatterned Si (001) substrates. Appl. Phys. Lett. 84, 1922 (2004).CrossRefGoogle Scholar
165.Eggleston, J.J. and Voorhees, P.W.: Ordered growth of nanocrystals via a morphological instability. Appl. Phys. Lett. 80, 306 (2002).CrossRefGoogle Scholar
166.Wise, S.M. and Johnson, W.C.: Numerical simulations of pattern-directed phase decomposition in a stressed, binary thin film. J. Appl. Phys. 94, 889 (2003).CrossRefGoogle Scholar
167.Schmidt, O.G., Lange, C., Eberl, K., Kienzle, O. and Ernst, F.: Formation of carbon-induced germanium dots. Appl. Phys. Lett. 71, 2340 (1997).CrossRefGoogle Scholar
168.Schmidt, O.G., Schieker, S., Eberl, K., Kienzle, O. and Ernst, F.: Carbon-induced germanium dots: Kinetically-limited islanding process prevents coherent vertical alignment. Appl. Phys. Lett. 73, 59 (1998).CrossRefGoogle Scholar
169.Schmidt, O.G., Lange, C., Eberl, K. and Ernst, O.K.F.: C-induced Ge dots: A versatile tool to fabricate ultra-small Ge nanostructures. Thin Solid Films 336, 248 (1998).CrossRefGoogle Scholar
170.Dentel, D., Vescan, L., Chretien, O. and Hollander, B.: Influence of molecular hydrogen on Ge island nucleation on Si(001). J. Appl. Phys. 88, 5113 (2000).CrossRefGoogle Scholar
171.Wakayama, Y., Sokolov, L.V., Zakharov, N., Werner, P. and Gosele, U.: Precise control of size and density of self-assembled Ge dot on Si(100) by carbon-induced strain-engineering. Appl. Surf. Sci. 216, 419 (2003).CrossRefGoogle Scholar
172.Baribeau, J-M., Lockwood, D.J., Balle, J., Rolfe, S.J. and Sproule, G.I.: Si1−x yGexCy alloy growth by electron cyclotron resonance plasma-assisted Si molecular beam epitaxy. Mater. Sci. Eng. B 89, 296 (2002).CrossRefGoogle Scholar
173.Baribeau, J-M., Lockwood, D.J., Balle, J., Rolfe, S.J., Sproule, G.I. and Moisa, S.: Molecular beam epitaxy synthesis of Si1−yCy and Si1−x yGexCy alloys and Ge islands using an electron cyclotron resonance argon/methane plasma. Thin Solid Films 410, 61 (2002).CrossRefGoogle Scholar
174.Shao, X., Jonczyk, R., Dashiell, M., Hits, D., Orner, B.A., Khan, A-S., Roe, K., Kolodzey, J., Berger, P.R., Kaba, M., Barteau, M.A. and Unruh, K.M.: Strain modification in thin Si1−x yGexCy alloys on (100) Si for formation of high density uniformly sized quantum dots. J. Appl. Phys. 85, 578 (1999).CrossRefGoogle Scholar
175.Dentel, D., Bischoff, J.L., Kubler, L., Stoffel, M. and Castelein, G.: Influence of a pre-deposited carbon submonolayer on the Ge island nucleation on Si(001). J. Appl. Phys. 93, 5069 (2003).CrossRefGoogle Scholar
176.Leifeld, O., Beyer, A., Muller, E., Grützmacher, D. and Kern, K.: Nucleation of Ge quantum dots on the C-alloyed Si(001) surface. Thin Solid Films 380, 176 (2000).CrossRefGoogle Scholar
177.Sakai, A. and Tatsumi, T.: Ge growth on Si using atomic hydrogen as a surfactant. Appl. Phys. Lett. 64, 52 (1994).CrossRefGoogle Scholar
178.Baribeau, J-M., Lockwood, D.J., Syme, R.W.G. and Labbe, H.J.: Atomic hydrogen assisted growth of Si-Ge heterostructrues on (001) Si, in Control of Semiconductor Surfaces and Interfaces, edited by Prokes, S.M., Glembocki, O.J., Brierley, S.K., Gibson, J.M., and Woodall, J.M. (Mater. Res. Soc. Symp. Proc. 448, Pittsburgh, PA, 1997), p. 113.Google Scholar
179.Portavoce, A., Ronda, A. and Berbezier, I.: Sb-surfactant mediated growth of Ge nanostructures. Mater. Sci. Eng. B 89, 205 (2002).CrossRefGoogle Scholar
180.Portavoce, A., Volpi, F., Ronda, A., Gas, P. and Berbezier, I.: Sb segregation in Si and SiGe: Effect on the growth of self-organised Ge dots. Thin Solid Films 380, 164 (2000).CrossRefGoogle Scholar
181.Eaglesham, D.J., Unterwald, F.C. and Jacobson, D.C.: Growth morphology and the equilibrium shape: The role of “surfactants” in Ge/Si island formation. Phys. Rev. Lett. 70, 966 (1993).CrossRefGoogle ScholarPubMed
182.Kamins, T.I., Medeiros-Ribeiro, G., Ohlberg, D.A.A. and Williams, R.S.: Annealing of phosphorus-doped Ge islands on Si(001). J. Appl. Phys. 95, 1562 (2004).CrossRefGoogle Scholar
183.Baribeau, J-M., Houghton, D.C., Jackman, T.E. and McCaffrey, J.P.: Molecular-beam-epitaxy growth of Ge on (100) Si. J. Electrochem. Soc. 136, 1158 (1989).CrossRefGoogle Scholar
184.Shin, H.K., Lockwood, D.J. and Baribeau, J-M.: Strain in coherentwave SiGe/Si superlattices. Solid State Commun. 114, 505 (2000).CrossRefGoogle Scholar