Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T23:52:18.923Z Has data issue: false hasContentIssue false

Adsorption and bonding of C1Hx and C2Hy on unreconstructed diamond(111). Dependence on coverage and coadsorbed hydrogen

Published online by Cambridge University Press:  31 January 2011

S. P. Mehandru
Affiliation:
Chemistry Department, Case Western Reserve University, Cleveland, Ohio 44106
Alfred B. Anderson*
Affiliation:
Chemistry Department, Case Western Reserve University, Cleveland, Ohio 44106
*
a)Address correspondence to this author.
Get access

Abstract

The adsorption and bonding of CH3, CH2, CH, C2H, and C2H2 fragments to clean and hydrogenated diamond(111) surfaces are investigated in the framework of the atom superposition and electron delocalization molecular orbital method. Low coverage calculations are performed using large cluster models for the surfaces, and high coverages are examined with band calculations on thick two-dimensional slabs with every surface carbon covered by a hydrocarbon fragment (i.e., 1:1 surface coverage). For low coverage adsorption on clean and H-covered surfaces the adsorption energies are in the order C2H>CH ≃ CH2>CH3. In each case, the predominant component of bonding is covalent in character and is a result of overlaps between the sp-hybridized singly occupied dangling surface state orbital on the surface carbon and the sp-hybridized orbital on the fragment carbon atom. While the charge transfer contribution to bonding is nearly the same for CH3, CH2, and CH fragments, it is significantly larger for C2H due to a comparatively stable radical orbital on C2H. C2H2 binds to the surface on the di-σ site where both its ends form bonds to the surface atoms. Onefold adsorption to a H-covered surface is predicted to be unstable. The 1:1 CH3 coverage on diamond(111) is highly unstable because of steric repulsions between adsorbate fragments due to their spacial proximity. This finding is supported by a calculation of the cis-trans isomerization energy of di-t-butyl ethylene, including full structure relaxations. At low coverage CH3 can bind on adjacent surface sites by tilting away from one another. The 1:1 coverage for CH2, CH, and C2H fragments is predicted to be stable on this surface.

Type
Diamond and Diamond-Like Materials
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Angus, J. C., Buck, F. A., Sunkara, M., Groth, T. F., Hayman, T. F., and Gat, R., Mater. Res. Bull., 38 (October 1989).CrossRefGoogle Scholar
2Spear, K.E., J. Am. Ceram. Soc. 72, 171 (1989), and references therein.CrossRefGoogle Scholar
3Angus, J. C. and Hayman, C. C., Science 241, 913 (1988).CrossRefGoogle Scholar
4Angus, J. C., Proc. of Symposium on Diamond and Diamond-like Materials, 175th Meeting of the Electrochemical Society, Los Angeles, CA, May 8, 1989.Google Scholar
5Badzian, A. R. and DeVries, R. C., Mater. Res. Bull. XXIII, 385 (1988).CrossRefGoogle Scholar
6DeVries, R.C., Annu. Rev. Mater. Sci. 17, 161 (1987).CrossRefGoogle Scholar
7Kobashi, K., Nishimura, K., Kawate, Y., and Horiuchi, T., Phys. Rev. B 38, 4067 (1988).CrossRefGoogle Scholar
8Chang, C-P., Flamm, D. L., Ibbotson, D. E., and Mucha, J. A., J. Appl. Phys. 63, 1744 (1988).CrossRefGoogle Scholar
9Belton, D. N. and Schmieg, S. J., J. Appl. Phys. 66, 4223 (1989).CrossRefGoogle Scholar
10Harris, S.J., Belton, D.N., Weiner, A.M., and Schmieg, S. J., J. Appl. Phys. 66, 5353 (1989).CrossRefGoogle Scholar
11Ma, J., Kawarada, H., Yonehara, T., Suzuki, J., Wei, J., Yokota, Y., and Hiraki, A., Appl. Phys. Lett. 55, 1071 (1989).CrossRefGoogle Scholar
12Liou, Y., Inspektor, A., Weimer, R., and Messier, R., Appl. Phys. Lett. 55, 631 (1989).CrossRefGoogle Scholar
13Amaratunga, G., Putnis, A., Clay, K., and Milne, W., Appl. Phys. Lett. 55, 634 (1989).CrossRefGoogle Scholar
14Meilunas, R., Wong, M. S., Sheng, K. C., Chang, R. P. H., and VanDuyne, R. P., Appl. Phys. Lett. 54, 2204 (1989).CrossRefGoogle Scholar
15Geis, M.W., Rathman, D.D., Enrlich, D.J., Murphy, R.A., and Lindley, W.T., IEEE Electron Device Lett. 8, 341 (1987).CrossRefGoogle Scholar
16Geis, M.W., Efremow, N. N., and Rathman, D. D., in Diamond and Diamond-like Materials Science and Engineering Study, edited by Johnson, G. H., Geis, M., and Badzian, A. (Materials Research Society, Pittsburgh, PA, 1988).Google Scholar
17Gildenblat, G. S., Grot, S. A., Hatfield, C.W., Wronski, C. R., Badzian, A. R., Badzian, T., and Messier, R., Mater. Res. Bull. XXV, 129 (1990).CrossRefGoogle Scholar
18Tsuda, M., Nakajima, M., and Oikawa, S., J. Am. Chem. Soc. 108, 5780 (1986).CrossRefGoogle Scholar
19Tsuda, M., Nakajima, M., and Oikawa, S., Jpn. J. Appl. Phys. 26, L527 (1987).CrossRefGoogle Scholar
20Frenklach, M. and Spear, K. E., J. Mater. Res. 3, 133 (1988).CrossRefGoogle Scholar
21Huang, D., Frenklach, M., and Maroncelli, M., J. Phys. Chem. 92, 6379 (1988).CrossRefGoogle Scholar
22Anderson, A. B., J. Chem. Phys. 62, 1187 (1975).CrossRefGoogle Scholar
23Anderson, A. B. and Mehandru, S. P., Surf. Sci. 136, 398 (1984).CrossRefGoogle Scholar
24Mehandru, S. P. and Anderson, A. B., Appl. Surf. Sci. 19, 116 (1984).CrossRefGoogle Scholar
25Chu, S.Y. and Anderson, A. B., Surf. Sci. 194, 55 (1988).CrossRefGoogle Scholar
26Mehandru, S. P., Anderson, A. B., Brazdil, J. F., and Grasselli, R. K., J. Phys. Chem. 91, 2930 (1987).CrossRefGoogle Scholar
27Mehandru, S. P., Anderson, A. B., and Brazdil, J. F., J. Am. Chem. Soc. 110, 1715 (1988).CrossRefGoogle Scholar
28Ward, M. D., Brazdil, J. F., Mehandru, S. P., and Anderson, A. B., J. Phys. Chem. 91, 6515 (1987).CrossRefGoogle Scholar
29Mehandru, S. P., Anderson, A. B., and Brazdil, J. F., J. Chem. Soc, Faraday Trans. I, 83, 463 (1987).Google Scholar
30Anderson, A. B., Grimes, R.W., and Hong, S.Y., J. Phys. Chem. 91, 4245 (1987).CrossRefGoogle Scholar
31Nath, K. and Anderson, A. B., Solid State Commun. 66, 277 (1988).CrossRefGoogle Scholar
32Laurie, P. G. and Wilson, J. M., Surf. Sci. 65, 453 (1977).CrossRefGoogle Scholar
33Yang, W. S., Sokolov, J., Jona, F., and Marcus, P. M., Solid State Commun. 41, 191 (1982).CrossRefGoogle Scholar
34Pate, B. B., Surf. Sci. 165, 83 (1986).CrossRefGoogle Scholar
35Waclawski, B. J., Pierce, D.T., Swanson, N., and Celotta, R. J., J. Vac. Sci. Technol. 21, 368 (1982).CrossRefGoogle Scholar
36Vidali, G. and Franki, D. R., Phys. Rev. B 27, 2480 (1983).CrossRefGoogle Scholar
37Vidali, G., Cole, M.W., Weinberg, W. H., and Steele, W. A., Phys. Rev. Lett. 51, 118 (1983).CrossRefGoogle Scholar
38Hamza, A.V., Kubiak, G. D., and Stulen, R. H., Surf. Sci. 206, L833 (1988).CrossRefGoogle Scholar
39Lander, J. J. and Morrison, J., Surf. Sci. 4, 241 (1966).CrossRefGoogle Scholar
40Derry, T., Smit, L., and van der Veen, J. F., Surf. Sci. 167, 502 (1986).CrossRefGoogle Scholar
41Benson, S.W., Thermochemical Kinetics (Wiley, New York, 1976).Google Scholar
42Frenklach, M., Clary, D.W., Gardiner, W. C. Jr, and Stein, S.T., Twentieth International Symposium on Combustion (The Combustion Institute, 1984), p. 887.Google Scholar