Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T23:56:21.419Z Has data issue: false hasContentIssue false

Adhesion properties of a structural etch stop material for use in multilayer electronic wiring structures

Published online by Cambridge University Press:  03 March 2011

Ruud A. Haring
Affiliation:
IBM Research Division, Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598
Sharon L. Nunes
Affiliation:
IBM Research Division, Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598
Richard P. McGouey
Affiliation:
IBM Research Division, Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598
Eileen A. Galligan
Affiliation:
IBM Research Division, Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598
Willi Volksen
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95120
James L. Hedrick
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95120
Jeff Labadie
Affiliation:
IBM Research Division, Almaden Research Center, 650 Harry Road, San Jose, California 95120

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A thermally stable copolymer of a polyimide and a dianiline terminated polydimethylsiloxane has been developed for use as a structural oxygen etch barrier material in high performance multilayer electronic wiring structures. We report on the preparation of the etch barrier material and on investigations of the etch stop and adhesion properties of this material. Studies on the effects of adhesion-promoting plasma treatments are supported by x-ray photoelectron spectroscopy (XPS) and Rutherford backscattering spectrometry (RBS) data. Before plasma treatment, it is observed that the siloxane component segregates to the surface. After either an O2 reactive ion etch treatment or H2O plasma exposure, the unusual XPS charging effects are interpreted as a surface layer containing two distinct phases: the etched polyimide fraction and a partial overlayer of a carbon containing SiO2

Type
Articles
Copyright
Copyright © Materials Research Society 1995

References

REFERENCES

1Davidson, E. E., Hardin, P. W., Katopis, G. A., Nealon, M. G., and Wu, L. L., IEEE Proc. 41st Electron. Comp. & Technol. Conf. (1991), p. 50.Google Scholar
2Tummala, R. R., Potts, H. R., and Ahmed, S., IEEE Proc. 41st Electron. Comp. & Technol. Conf. (1991), p. 682.Google Scholar
3Redmond, T. F., Prasad, C., and Walker, G. A., IEEE Proc. 41st Electron. Comp. & Technol. Conf. (1991), p. 689.Google Scholar
4Paraszczak, J., Cataldo, J., Galligan, E., Graham, W., McGouey, R., Nunes, S., Serino, R., Shih, D. Y., Babich, E., Deutsch, A., Kopcsay, G., Goldblatt, R., Hofer, D., Labadie, J., Hedrick, J., Narayan, C., Saenger, K., Shaw, J., Ranieri, V., Ritsko, J., Rothman, L., Volksen, W., Wilczynski, J., Witman, D., and Yeh, H., IEEE Proc. 41st Electron. Comp. & Technol. Conf. (1991), p. 362.Google Scholar
5Hedrick, J. L., Russell, T. P., Swanson, S., Hofer, D., and Volksen, W., IBM Techn. Disclosure Bull. 37 (2A), 371 (1994).Google Scholar
6Volksen, W., Yoon, D. Y., and Hedrick, J. L., IEEE Trans. Compon.Hybrids Manuf. Technol. 15 (1), 107 (1992).Google Scholar
7Cunningham, C., in Proc. 8th Symp. Plasma Processing, edited by Mathad, G. S. and Hess, D. W. (Electrochemical Society, Pennington, NJ, 1990), Vol. 90–2, p. 759.Google Scholar
8Kim, J., Kim, K. S., and Kim, Y. H., J. Adhesion Sci. Technol. 3(3), 175 (1989).Google Scholar
9Wagner, C. D., Riggs, W. M., Davis, L. E., Moulder, J. F., and Muilenberg, G. E., Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer PHI, Eden Prairie, MN, 1979).Google Scholar
10van der Veen, J.F., Surf. Sci. Rep. 5, 199 (1985).CrossRefGoogle Scholar
11Tromp, R. M., Kersten, H. H., Granneman, E., Saris, F. W., Koudijs, R., and Kilsdonk, W. J., Nucl. Instrum. Methods B 4, 155 (1984).CrossRefGoogle Scholar
12Tromp, R. M., Copel, M., Reuter, M. C., Horn-von Hoegen, M., Speidell, J., and Koudijs, R., Rev. Sci. Instrum. 62, 2679 (1991).Google Scholar
13Gardella, J. A. Jr., Ferguson, S. A., and Chin, R. L., Appl. Spectrosc. 40 (2), 224 (1986).CrossRefGoogle Scholar
14Grunthaner, F. J. and Grunthaner, P. J., Mater. Sci. Rep. 1, 65 (1986).CrossRefGoogle Scholar
15Gray, R. C., Carver, J. C., and Hercules, D. M., J. Electron. Spectrosc. Rel. Phen. 8, 343 (1976).Google Scholar
16CD. Wagner, Passoja, D. E., Hillery, H. F., Kinisky, T. G., Six, H. A., Jansen, W. T., and Taylor, J. A., J. Vac. Sci. Technol. 21 (4), 933 (1982).Google Scholar
17Seah, M. P., in Practical Surface Analysis, edited by Briggs, D. and Seah, M.P. (John Wiley, New York, 1983), Chap. 5.Google Scholar