Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-25T22:15:14.139Z Has data issue: false hasContentIssue false

Acid properties of M-SBA-15 and M-SBA-15-SO3H (M = Al, Ti) materials and their role on esterification of oleic acid

Published online by Cambridge University Press:  13 November 2018

Denis A. Cabrera-Munguia
Affiliation:
Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán 58030, México
Horacio González*
Affiliation:
Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán 58030, México
Edgar Tututi-Ríos
Affiliation:
Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán 58030, México
Aída Gutiérrez-Alejandre
Affiliation:
UNICAT, Departamento de Ingeniería Química, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
José L. Rico
Affiliation:
Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán 58030, México
*
a)Address all correspondence to this author. e-mail: hogoro@umich.mx
Get access

Abstract

The acidity of SBA-15 was tuned with the incorporation of Al+3, Ti+4, and –PrSO3H groups through sol–gel, employing molar ratios of Si/M = 10 (M = Al, Ti) and Si/S = 10. This results in mesoporous materials with the typical hexagonal structure of SBA-15, large surface areas, and great pore diameter. The incorporation of Al+3 and Ti+4 mainly leads to catalysts with both Brönsted and Lewis acid sites. The addition of sulfonic groups to these samples enhanced their surface acidity, creating preferentially Brönsted acid sites. Among the evaluated catalysts, the SBA-15-SO3H showed the highest catalytic activity, which was related to the high concentration of Lewis acid sites, and a remarkable resistance to deactivation, probably due to its low hydrophilicity. A first order kinetic equation fits well the experimental data and an activation energy of 31.5 kJ/mol similar to other reports for this reaction was calculated for the SBA-15-SO3H catalyst.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Sharma, Y.C., Singh, B., and Korstad, J.: Latest developments on application of heterogeneous basic catalysts for an efficient and eco friendly synthesis of biodiesel: A review. Fuel 90, 1309 (2011).CrossRefGoogle Scholar
Baskar, G. and Aiswarya, R.: Trends in catalytic production of biodiesel from various feedstocks. Renewable Sustainable Energy Rev. 57, 496 (2016).CrossRefGoogle Scholar
Atadashi, I.M., Aroua, M.K., Abdul, A.R., and Sulaiman, N.M.N.: Production of biodiesel using high free fatty acid feedstocks. Renewable Sustainable Energy Rev. 16, 3275 (2012).CrossRefGoogle Scholar
Sharma, Y.C., Singh, B., and Korstad, J.: Advancements in solid acid catalysts for ecofriendly and economically viable synthesis of biodiesel. Biofuels, Bioprod. Biorefin. 5, 69 (2011).CrossRefGoogle Scholar
Lam, M.K., Lee, K.T., and Mohamed, A.R.: Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review. Biotechnol. Adv. 28, 500 (2010).CrossRefGoogle ScholarPubMed
Atadashi, I.M., Aroua, M.K., Abdul, A.R., and Sulaiman, N.M.N.: The effects of catalysts in biodiesel production: A review. J. Ind. Eng. Chem. 19, 14 (2013).CrossRefGoogle Scholar
Kirumakki, S.R., Nagaraju, N., Komandur, V.R., and Chary, K.V.R.: Esterification of alcohols with acetic acid over zeolites Hβ, HY, and HZSM5. Appl. Catal., A 17, 185 (2006).CrossRefGoogle Scholar
Chung, K-H. and Park, B-G.: Esterification of oleic acid in soybean oil on zeolite catalysts with different acidity. J. Ind. Eng. Chem. 15, 388 (2009).CrossRefGoogle Scholar
Prinsen, P., Luque, R., and González-Arellano, C.: Zeolite catalyzed palmitic acid esterification. Microporous and Mesoporous Materials 262, 133 (2018).CrossRefGoogle Scholar
Caetano, C.S., Fonseca, I.M., Ramos, A.M., Vital, J., and Castanheiro, J.E.: Esterification of free fatty acids with metanol using heteropolyacids immobilized on silica. Catal. Commun. 9, 1996 (2008).CrossRefGoogle Scholar
Tropecêlo, A.I., Casimiro, M.H., Fonseca, I.M., Ramos, A.M., Vital, J., and Castanheiro, J.E.: Esterification of free fatty acids to biodiesel over heteropolyacids immobilized on mesoporous silica. Appl. Catal., A 390, 183 (2010).CrossRefGoogle Scholar
Kuzminska, M., Kovalchuk, T.V., Backov, R., and Gaigneaux, E.M.: Immobilizing heteropolyacids on zirconia-modified silica as catalysts for oleochemistry transesterification and esterification reactions. J. Catal. 320, 1 (2014).CrossRefGoogle Scholar
Tesser, R., Casale, L., Verde, D., Di Serio, M., and Santacesaria, E.: Kinetics and modeling of fatty acids esterification on acid exchange resins. Chem. Eng. J. 157, 539 (2010).CrossRefGoogle Scholar
Park, J-Y., Kim, D-K., and Lee, J-S.: Esterification of free fatty acids using water-tolerable Amberlyst as a heterogeneous catalyst. Bioresour. Technol. 101, 562 (2010).CrossRefGoogle ScholarPubMed
Pappu, V.K.S., Kanyi, V., Santhanakrishnan, A., Lira, C.T., and Miller, D.J.: Butyric acid esterification over Amberlyst solid acid catalysts: The effect of alcohol carbon chain lengh. Bioresour. Technol. 130, 793 (2013).CrossRefGoogle Scholar
Zhao, D., Sun, J., Li, Q., and Stucky, G.D.: Morphological control of highly ordered mesoporous silica SBA-15. Chem. Mater. 12, 275 (2000).CrossRefGoogle Scholar
Gutiérrez, O.Y., Fuentes, G.A., Salcedo, C., and Klimova, T.: SBA-15 supports modified by Ti and Zr grafting for NiMo hydrodesulfurization catalysts. Catal. Today 116, 485 (2006).CrossRefGoogle Scholar
Lualdi, M., Di Carlo, G., Logdberg, S., Jaras, S., and Boutonnet, M.: Effect of Ti and Al addition via direct synthesis to SBA-15 as support for cobalt based Fischer-Tropsch catalysts. Appl. Catal., A 443–444, 76 (2012).CrossRefGoogle Scholar
Chen, S-Y., Yokoi, T., Tang, C-Y., Jang, L-Y., Tatsumi, T., Chan, J.C.C., and Cheng, S.: Sulfonic acid-functionalized platelet SBA-15 materials as efficient catalyst for biodiesel synthesis. Green Chem. 13, 2920 (2011).CrossRefGoogle Scholar
Basaldella, E.I., Legnoverde, M.S., Jiménez-Morales, I., Rodríguez-Castellón, E., Dalla Costa, B.O., and Querini, C.A.: Preparation, characterization and catalytic activity towards green reactions of sulfonic functionalized SBA-15. Adsorption 17, 631 (2011).CrossRefGoogle Scholar
Mbaraka, I.K., Radu, D.R., Lin, V.S.Y., and Shanks, B.H.: Organosulfonic acid-functionalized mesoporous silicas for the esterification of fatty acid. J. Catal. 219, 329 (2003).CrossRefGoogle Scholar
Liang, C., Wei, M-C., Tseng, H-H., and Shu, E-C.: Synthesis and characterization of the acidic properties and pore texture of Al-SBA-15 supports for the canola oil transesterification. Chem. Eng. J. 223, 785 (2013).CrossRefGoogle Scholar
Cabrera-Munguia, D.A., González, H., Gutiérrez-Alejandre, A., Rico, J.L., Huirache-Acuña, R., Maya-Yescas, R., and del Río, R.E.: Heterogeneous acid conversion of a tricaprylin-palmitic acid mixture over Al-SBA-15 catalysts: Reaction study for biodiesel synthesis. Catal. Today 282, 195 (2017).CrossRefGoogle Scholar
Chen, S-Y., Mochizuki, T., Abe, Y., Toba, M., and Yoshimura, Y.: Ti-incorporated SBA-15 mesoporous silica as an efficient and robust Lewis solid acid catalyst for the production of high-quality biodiesel fuels. Appl. Catal., B 148–149, 344 (2014).CrossRefGoogle Scholar
Léon, C.I.S., Song, D., Su, F., An, S., Liu, H., Gao, J., Guo, Y., and Leng, J.: Propylsulfonic acid and methyl bifunctionalized Ti-SBA-15 silica as an efficient heterogeneous acid catalyst for esterification and transesterification. Microporous Mesoporous Mater. 204, 218 (2015).CrossRefGoogle Scholar
Mbaraka, I.K. and Shanks, B.H.: Design of multifunctionalized mesoporous silicas for esterification of fatty acid. J. Catal. 229, 365 (2005).CrossRefGoogle Scholar
Shah, K.A., Parikh, J.K., and Maheria, K.C.: Biodiesel synthesis from acid oil over large pore sulfonic acid-modified mesostructured SBA-15: Process optimization and reaction kinetics. Catal. Today 237, 29 (2014).CrossRefGoogle Scholar
Melero, J.A., Bautista, L.F., Morales, G., Iglesias, J., and Sánchez-Vázquez, R.: Acid-catalyzed production of biodiesel over arenesulfonic SBA-15: Insights into the role of water in the reaction network. Renewable Energy 75, 425 (2015).CrossRefGoogle Scholar
Melero, J.A., Bautista, L.F., Iglesias, J., Morales, G., Sánchez-Vázquez, R., and Suárez-Marcos, I.: Biodiesel production over arenesulfonic acid-modified mesostructures catalysts: Optimization of reaction parameter using response surface methodology. Top. Catal. 53, 795 (2010).CrossRefGoogle Scholar
Li, W., Xu, K., Xu, L., Hu, J., Ma, F., and Guo, Y.: Preparation of highly ordered mesoporous AlSBA-15-SO3H hybrid material for the catalytic synthesis of chalcone under solvent-free condition. Appl. Surf. Sci. 256, 3183 (2010).CrossRefGoogle Scholar
Cabrera-Munguia, D.A., Tututí-Ríos, E., Gutiérrez-Alejandre, A., Rico, J.L., and González, H.: Reaction study for the esterification of oleic acid over M-SBA-15-SO3H (M = Al, Ti) catalysts. Energy Procedia 142, 590 (2017).CrossRefGoogle Scholar
Margolese, D., Melero, J.A., and Christians, S.C.: Direct synthesis of ordered SBA-15 mesoporous silica containing sulfonic acid groups. Chem. Mater. 12, 2448 (2000).CrossRefGoogle Scholar
Alenezi, R., Leeke, G.A., Winterbottom, J.M., Santos, R.C.D., and Khan, A.R.: Esterification kinetics of free fatty acids with supercritical methanol for biodiesel production. Energy Convers. Manage. 51, 1055 (2010).CrossRefGoogle Scholar
Hegel, P., Andreatta, A., Pereda, S., Bottini, S., and Brignole, E.A.: High pressure phase equilibria of supercritical alcohols with triglycerides, fatty esters and cosolvents. Fluid Phase Equilib. 266, 31 (2008).CrossRefGoogle Scholar
Jeenpadiphat, S., Björk, E-M., Odén, M., and Tungasmita, D-N.: Propylsulfonic acid-funcionalized mesoporous silica catalysts for esterification of fatty acids. J. Mol. Catal. A: Chem. 410, 253 (2015).CrossRefGoogle Scholar
Cattaneo, A.S., Chiara, F., Villa, D.C., Angioni, S., Milanese, C., Capsoni, D., Grandi, S., Mustarelli, P., Allodi, V., Mariotto, G., Brutti, S., and Quartarone, E.: SBA-15 mesoporous silica hihly functionalized with propylsulfonic pendants: A thorough physico-chemical characterization. Microporous Mesoporous Mater. 219, 219 (2016).CrossRefGoogle Scholar
Muthu Kumaran, G.M., Garg, S., Soni, K., Kumar, M., Gupta, J.K., Sharma, L.D., Rama Rao, K.S., and Dhar, M.: Synthesis and characterization of acidic properties of Al-SBA-15 materials with varying Si/Al ratios. Microporous Mesoporous Mater. 114, 103 (2008).CrossRefGoogle Scholar
Çitak, A., Erdem, B., Erdem, S., and Öksüzoğlu, R-M.: Synthesis, characterization and catalytic behavior of functionalized mesoporous SBA-15 with various organo-silanes. J. Colloid Interface Sci. 369, 160 (2012).CrossRefGoogle ScholarPubMed
Chen, Y., Huang, Y., Xiu, J., Han, X., and Bao, X.: Direct synthesis, characterization and catalytic activity of titanium-substituted SBA-15 mesoporous molecular sieves. Appl. Catal., A 273, 185 (2004).CrossRefGoogle Scholar
Zheng, Y., Li, J., Zhao, N., Wei, W., and Sun, Y.: One-pot synthesis of mesostructured AlSBA-15-SO3H effective catalysts for the esterification of salicylic acid with dimethyl carbonate. Microporous Mesoporous Mater. 92, 195 (2006).CrossRefGoogle Scholar
Ochoa-Hernández, C., Yanga, Y., Pizarro, P., de la Peña O’Shea, V.A., Coronado, J.M., and Serrano, D.P.: SBA-15 mesoporous silica highly functionalized with propylsulfonic pendants: A thorough physico-chemical characterization. Catal. Today 210, 81 (2013).CrossRefGoogle Scholar
Rahmat, N., Sadon, N., and Abeed-Yusof, M.: Thermogravimetric analysis (TGA) profiles at different calcination conditions for synthesis of PTES-SBA-15. Am. J. Appl. Sci. 14, 938 (2017).CrossRefGoogle Scholar
Dalla-Costa, B.O., Legnoverde, M.S., Lago, C., Decolatti, H.P., and Querini, C.A.: Sulfonic functionalized SBA-15 catalysts in the gas phase glicerol dehydration. Thermal stability and catalyst deactivation. Microporous Mesoporous Mater. 230, 66 (2016).CrossRefGoogle Scholar
Lourenço, J.P., Macedo, M.I., and Fernandes, A.: Sulfonic-functionalized SBA-15 as an active catalyst for the gas-phase dehydration of glycerol. Catal. Commun. 19, 105 (2012).CrossRefGoogle Scholar
Emeis, C.A.: Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. J. Catal. 141, 347 (1993).CrossRefGoogle Scholar
Yang, G., Zhou, L., and Han, X.: Lewis and Brönsted acid sites in M4+ doped zeolites (M = Ti, Zr, Ge, Sn, Pb) as well as interactions with probe molecules: A DFT study. J. Mol. Catal. A-Chem 363–364, 371 (2012).CrossRefGoogle Scholar
Mokaya, R. and Jones, W.: Post-synthesis grafting of Al onto MCM-41. Chem. Commun. 22, 2185 (1997).CrossRefGoogle Scholar
Morrow, B.A. and Cody, I.A.: Infrared studies of reactions on oxide surfaces. 5. Lewis acid sites on dehydroxylated silica. J. Phys. Chem. 18, 1995 (1976).CrossRefGoogle Scholar
Crépeau, G., Montouillout, V., Vimont, A., Mariey, L., Cseri, T., and Mauge, F.: Nature, structure and strength of the acidic sites of amorphous silica alumina: An IR and NMR study. J. Phys. Chem. B 110, 15172 (2006).CrossRefGoogle ScholarPubMed
Szczodrowski, K., Prélot, B., Lantenois, S., Douillard, J.M., and Zajac, J.: Effect of heteroatom doping on surface acidity and hydrophilicity of Al, Ti, Zr-doped mesoporous SBA-15. Microporous Mesoporous Mater. 124, 84 (2009).CrossRefGoogle Scholar
Ruthstein, S., Schmidt, J., Kesselman, E., Talmon, Y., and Goldfarb, D.: Resolving intermediate solution structures during the formation of mesoporous SBA-15. J. Am. Chem. Soc. 128, 3366 (2006).CrossRefGoogle ScholarPubMed
Ma, L., Han, Y., Sun, K., Lu, J., and Ding, J.: Kinetics and thermodynamics studies of the esterification of acidified oil catalyzed by sulfonated cation exchange resin. J. Energy Chem. 24, 456 (2015).CrossRefGoogle Scholar
Supplementary material: File

Cabrera-Munguiaet al. supplementary material

Table S1 and Figure S1

Download Cabrera-Munguiaet al. supplementary material(File)
File 99.8 KB