Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-24T08:08:37.975Z Has data issue: false hasContentIssue false

The viscosity of germanium during substrate relaxation upon thermal anneal

Published online by Cambridge University Press:  31 January 2011

Sara E. Rosenberg
Affiliation:
Thermal Analysis of Materials Processing Laboratory, Mechanical Engineering Department, Tufts University, Medford, Massachusetts 02155
Cynthia G. Madras
Affiliation:
Thermal Analysis of Materials Processing Laboratory, Mechanical Engineering Department, Tufts University, Medford, Massachusetts 02155
Peter Y. Wong*
Affiliation:
Thermal Analysis of Materials Processing Laboratory, Mechanical Engineering Department, Tufts University, Medford, Massachusetts 02155
Ioannis N. Miaoulis
Affiliation:
Thermal Analysis of Materials Processing Laboratory, Mechanical Engineering Department, Tufts University, Medford, Massachusetts 02155
*
a)Author to whom correspondence should be addressed.
Get access

Extract

Thin-film heterostructures experience structural relaxation when subjected to post-deposition thermal heat treatment. The rate of relaxation, elastic effects, and inelastic effects on the stress and deformation of the structure are determined by the physical properties of the materials, in particular, the solid-phase viscosity. During relaxation, movement of defects causes an increase of viscosity with time at a constant rate as these defects are annihilated. Experimental anneals have been performed on structures with polycrystalline silicon films on (111) germanium substrates, in which the substrate relaxes during thermal annealing. A numerical analysis of the experimental results has determined values for the viscosity and viscosity rate of (111) germanium wafers. In addition, four zones of the relaxation process have been identified, and results indicate that the increasing viscosity with time has a larger effect at lower furnace ramp-up rates.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Frost, H. J. and Ashby, M. F., Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics (Pergamon Press, New York, 1982), Chap. 9.Google Scholar
2.Rosenberg, S. E., Wong, P. Y., and Miaoulis, I. N., Proc. ASME HTD-28, 1 (1994).Google Scholar
3.Isomae, S., Nanba, M., Tamaki, Y., and Maki, M., Appl. Phys. Lett. 30, 564 (1977).CrossRefGoogle Scholar
4.Witvrouw, A., Volkert, C. A., and Spaepen, F., Mater. Sci. Eng. A134, 1274 (1991).CrossRefGoogle Scholar
5.Witvrouw, A., Campos, P., and Spaepen, F., in Thin Films: Stresses and Mechanical Properties III, edited by Nix, W. D., Bravman, J. C., Arzt, E., and Freund, L. B. (Mater. Res. Soc. Symp. Proc. 239, Pittsburgh, PA, 1992), p. 121.Google Scholar
6.Bouldin, C. E., Forman, R. A., Bell, M. I., and Donovan, E. P., Phys. Rev. B 44, 5492 (1991).CrossRefGoogle Scholar
7.Fortner, J. and Lannin, J. S., Phys. Rev. B 37, 10 154 (1988).CrossRefGoogle Scholar
8.Roorda, S., Sinke, W. C., Poate, J. M., Jacobson, D. C., Dierker, S., Dennis, B. S., Eaglesham, D. J., Spaepen, F., and Fuoss, P., Phys. Rev. B 44, 3702 (1991).CrossRefGoogle Scholar
9.EerNisse, E. P., Appl. Phys. Lett. 30, 290 (1977).CrossRefGoogle Scholar
10.Drucker, D. C., Introduction to Mechanics of Deformable Solids (McGraw-Hill, New York, 1967).Google Scholar
11.Volkert, C. A., J. Appl. Phys. 70, 3521 (1991).CrossRefGoogle Scholar
12.Loopstra, O. B., van Snek, E. R., Th. de Keijser, H., and Mittemeijer, E. J., Phys. Rev. B 44, 13 519 (1991).CrossRefGoogle Scholar
13.Madras, C. G., Goldman, L., Wong, P. Y., and Miaoulis, I. N., in Materials Reliability in Microelectronics IV, edited by Børgesen, P., Coburn, J. C., Sanchez, J. E., Jr., Rodbell, K. P., and Filter, W. F. (Mater. Res. Soc. Symp. Proc. 338, Pittsburgh, PA, 1994), p. 179.Google Scholar
14.Townsend, P. H., Barnett, D. M., and Brunner, T. A., J. Appl. Phys. 62, 4438 (1987).CrossRefGoogle Scholar
15.McClintock, F. A. and Argon, A. S., Mechanical Behavior of Materials (Addison-Wesley, Reading, MA, 1966).Google Scholar
16.Polakowski, N. H. and Ripling, E. J., Strength and Structure of Engineering Materials (Prentice-Hall, Pennington, NJ, 1966).Google Scholar
17.Hu, S. M., J. Appl. Phys. 70, R53–R80 (1991).CrossRefGoogle Scholar
18.Tsao, S. S. and Spaepen, F., Acta Metall. 33, 881 (1985).CrossRefGoogle Scholar
19.Rosenberg, S. E., Wong, P. Y., and Miaoulis, I. N., Thin Solid Films 269, 64 (1995).CrossRefGoogle Scholar