Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T04:19:14.824Z Has data issue: false hasContentIssue false

Use of an atomic force microscope for the metrological verification of the reference standards of instrumented indentation tests

Published online by Cambridge University Press:  27 September 2011

Satoshi Takagi*
Affiliation:
National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
*
a)Address all correspondence to this author. e-mail: satoshi.takagi@aist.go.jp
Get access

Abstract

Availability of atomic force microscope (AFM) is discussed in the point of view of the measurement standard. For indenter geometry verification in the pyramidal part, the fully mathematical method, Regression Polyhedral Model, is used to avoid the effects of human factors and the misalignment of the indenter axis. As an example, facet angles, angles between opposite faces, and the interior angles of the square base of pyramid of a Vickers indenter are analyzed to demonstrate the efficiency of this method. The area function of the indenter is also calculated as an analytical result of AFM image. The procedure of uncertainty of measurement of those geometrical parameters is developed. For geometrical parameters of pyramid, the uncertainty can be estimated by combining the resolution and linearity of the AFM, the effect of the scanning tip, the uncertainty of the reference standard used to calibrate the AFM, and the regression error which includes flatness and roughness of the pyramid faces; and for the uncertainty of the area function, the uncertainty of AFM coordinates are taken into account. The results show that the uncertainty of facet angles and angles between opposite faces is small; but on the other hand, the uncertainty of the interior angles of square base of pyramid is not negligible. The uncertainty of the area function is almost proportional to the contact depth, but the relative uncertainty is exponentially increased where the contact depth is small. In addition, the observations of indents are shown to verify the indentation hardness HIT of the certified reference materials (CRMs) by comparing with Vickers hardness determined with AFM observations. Through those examples, the possibility to improve certified values of CRMs is suggested.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.ISO 14577–2: 2002, Metallic materials—Instrumented indentation test for hardness and materials parameters—Part 2: Verification and calibration of testing machines.Google Scholar
2.Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564 (1992).CrossRefGoogle Scholar
3.Ishibashi, T., Ohki, M., Takagi, S., Yoshikawa, Y., Katayama, S., Iwatsubo, S., and Fujitsuka, M.: Proposal for ISO14577: Metallic materials—instrumented indentation test for hardness and materials parameters—Part 1: Test method (1st. re-evaluation of unloading curve’s profile at neighborhood of unloading starting point and discussion of real maximum contact depth). J. Mat. Test. Res. Assoc. Jpn. 56(2), 54 (2011).Google Scholar
4.Hasche, K., Herrmann, K., Pohlenz, F., and Thiele, K.: Determination of the geometry of microhardness indenters with a scanning force microscope. Meas. Sci. Technol. 9, 1082 (1998).CrossRefGoogle Scholar
5.Herrmann, K., Jennett, N.M., Wegener, W., Meneve, J., Hasche, K. and Seemann, R.: Progress in determination of the area function of indenters used for nanoindentation. Thin Solid Films 377378, 394 (2000).CrossRefGoogle Scholar
6.Takagi, S., Usuda, T., Kongkavitool, R., and Ishibashi, T.: Nanoscale verification of hardness indenters by atomic force microscopy. J. Mat. Test. Res. Assoc. Jpn. 52, 169 (2007).Google Scholar
7.Fischer-Cripps, A.C.: The sharpness of a Berkovich indenter. J. Mater. Res. 25, 927 (2010).CrossRefGoogle Scholar
8.Takagi, S., Hattori, K., Seino, Y., and Nakano, H.: Estimation of effects of indenter-tip geometry by means of finite element analyses of nano-indentation. VDI BERICHITE 1685, 243 (2002).Google Scholar
9.Takagi, S. and Ishibashi, T.: Analysis of indenter geometry verification data by means of the regression plane fitting, in Proceedings of IMEKO 2010 TC3, TC5 and TC22 Conferences, 133 (2010).Google Scholar
10.Nano-RTM AFM User’s Manual. (Pacific Nanotechnology, Inc., Santa Clara, California, 2002).Google Scholar
11.Guide to the Expression of Uncertainty in Measurement: BIPM, IEC, IFCC, ISO, IUPAC, IUPAP, OIML (ISO, Geneva, Switzerland, 1995).Google Scholar
12.Timoshenko, S.P. and Goodier, J.N.: Theory of Elasticity (McGraw-Hill, New York, 1970).Google Scholar
13.Sneddon, I.N.: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965).CrossRefGoogle Scholar
14.Ishibashi, T., Ohki, M., Katayama, S., and Takagi, S.: Practical nano-indentation theory and experiments of the pyramidal indenter (7th AFM profiles of Microvickers indenter tip and elastic indentation equations between the hyperboloid of revolution indenter and plane specimen). J. Mat. Test. Res. Assoc. Jpn. 50, 83 (2005).Google Scholar
15.ISO 14577–1: 2002, Metallic materials—Instrumented indentation test for hardness and materials parameters—Part 1: Test method.Google Scholar