Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T02:57:45.408Z Has data issue: false hasContentIssue false

Tuning cooperative vesicle templating and liquid crystal templating simply by varying silica source

Published online by Cambridge University Press:  31 January 2011

Yunhua Wang
Affiliation:
Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, People's Republic of China
Chengzhong Yu*
Affiliation:
Department of Chemistry, and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, People's Republic of China; and Australian Research Council (ARC) Centre of Excellence for Functional Nanomaterials, and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
*
a)Address all correspondence to this author. e-mail: czyu@fudan.edu.cn
Get access

Abstract

The cooperative self-assembly of organic–inorganic siliceous composite structures has been studied from the aspect of inorganic precursors. We reveal that the vesicular or mesostructured materials can be obtained selectively by just changing the silica sources in one templating system. For poly(ethylene oxide)-type block copolymers with either poly(propylene oxide) or poly(butylene oxide) as the hydrophobic moieties, when the other synthesis parameters are exactly the same, the use of tetramethyl orthosilicate (TMOS) as a silica source gives rise to highly ordered mesostructures, while the use of tetraethyl orthosilicate (TEOS) leads to vesicles or foams. The attenuated total reflection Fourier transform infrared (ATR-FTIR) technique is used to monitor the silicate species derived from the hydrolysis and condensation of TMOS and TEOS as a function of the reaction time. On the basis of the ATR-FTIR results, we propose a “differentiating effect” at relatively high pH (4.7) to interpret the influence of different silica sources on the self-organized composite structures. For comparison, a “leveling effect” at relatively low pH (strong acidic conditions) is revealed to explain that both TMOS and TEOS lead to the same mesostructures. Our contribution provides a feasible and designable method to synthesize from conventional ordered mesostructures to novel vesicular structures, which are significant for their future practical applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Zhang, L.F., Eisenberg, A.Multiple morphologies of crew-cut aggregates of polystyrene-B-poly(acrylic acid) block-copolymers. Science 268, 1728 (1995)CrossRefGoogle ScholarPubMed
2.Antonietti, M., Forster, S.Vesicles and liposomes: A self-assembly principle beyond lipids. Adv. Mater. 15, 1323 (2003)CrossRefGoogle Scholar
3.Kita-Tokarczyk, K., Grumelard, J., Haefele, T., Meier, W.Block copolymer vesicles—Using concepts from polymer chemistry to mimic biomembranes. Polymer (Guildf.) 46, 3540 (2005)CrossRefGoogle Scholar
4.Discher, B.M., Won, Y.Y., Ege, D.S., Lee, J.C.M., Bates, F.S., Discher, D.E., Hammer, D.A.Polymersomes: Tough vesicles made from diblock copolymers. Science 284, 1143 (1999)CrossRefGoogle ScholarPubMed
5.Alexandridis, P., Olsson, U., Lindman, B.A record nine different phases (four cubic, two hexagonal, and one lamellar lyotropic liquid crystalline and two micellar solutions) in a ternary isothermal system of an amphiphilic block copolymer and selective solvents (water and oil). Langmuir 14, 2627 (1998)CrossRefGoogle Scholar
6.Bates, F.S., Fredrickson, G.H.Block copolymer thermodynamics: Theory and experiment. Annu. Rev. Phys. Chem. 41, 525 (1990)CrossRefGoogle ScholarPubMed
7.Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., Beck, J.S.Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710 (1992)CrossRefGoogle Scholar
8.Attard, G.S., Glyde, J.C., Goltner, C.G.Liquid-crystalline phases as templates for the synthesis of mesoporous silica. Nature 378, 366 (1995)CrossRefGoogle Scholar
9.Monnier, A., Schuth, F., Huo, Q., Kumar, D., Margolese, D., Maxwell, R.S., Stucky, G.D., Krishnamurty, M., Petroff, P., Firouzi, A., Janicke, M., Chmelka, B.F.Cooperative formation of inorganic–organic interfaces in the synthesis of silicate mesostructures. Science 261, 1299 (1993)CrossRefGoogle ScholarPubMed
10.Huo, Q.S., Margolese, D.I., Ciesla, U., Demuth, D.G., Feng, P.Y., Gier, T.E., Sieger, P., Firouzi, A., Chmelka, B.F., Schuth, F., Stucky, G.D.Organization of organic-molecules with inorganic molecular species into nanocomposite biphase arrays. Chem. Mater. 6, 1176 (1994)CrossRefGoogle Scholar
11.Zhao, D.Y., Feng, J.L., Huo, Q.S., Melosh, N., Fredrickson, G.H., Chmelka, B.F., Stucky, G.D.Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548 (1998)CrossRefGoogle ScholarPubMed
12.Sanchez, C., Boissiere, C., Grosso, D., Laberty, C., Nicole, L.Design, synthesis, and properties of inorganic and hybrid thin films having periodically organized nanoporosity. Chem. Mater. 20, 682 (2008)CrossRefGoogle Scholar
13.Hoffmann, F., Cornelius, M., Morell, J., Froba, M.Silica-based mesoporous organic–inorganic hybrid materials. Angew. Chem. Int. Ed. 45, 3216 (2006)CrossRefGoogle ScholarPubMed
14.Hubert, D.H.W., Jung, M., Frederik, P.M., Bomans, P.H.H., Meuldijk, J., German, A.L.Vesicle-directed growth of silica. Adv. Mater. 12, 1286 (2000)3.0.CO;2-7>CrossRefGoogle Scholar
15.Yuan, P., Zhou, X.F., Wang, H.N., Liu, N.A., Hu, Y.F., Auchterlonie, G.J., Drennan, J., Yao, X.D., Lu, G.Q., Zou, J., Yu, C.Z.Electron-tomography determination of the packing structure of macroporous ordered siliceous foams assembled from vesicles. Small 5, 377 (2009)CrossRefGoogle ScholarPubMed
16.Wang, H.N., Zhou, X.F., Yu, M.H., Wang, Y.H., Han, L., Zhang, J., Yuan, P., Auchterlonie, G., Zou, J., Yu, C.Z.Supra-assembly of siliceous vesicles. J. Am. Chem. Soc. 128, 15992 (2006)CrossRefGoogle ScholarPubMed
17.Wang, H.N., Wang, Y.H., Zhou, X.F., Zhou, L., Tang, J.W., Lei, J., Yu, C.Z.Siliceous unilamellar vesicles and foams by using block-copolymer cooperative vesicle templating. Adv. Funct. Mater. 17, 613 (2007)CrossRefGoogle Scholar
18.Tan, B., Vyas, S.M., Lehmer, H.J., Knutson, B.L., Rankin, S.E.Synthesis of inorganic and organic–inorganic hybrid hollow particles using a cationic surfactant with a partially fluorinated tail. Adv. Funct. Mater. 17, 2500 (2007)CrossRefGoogle Scholar
19.Fan, J., Boettcher, S.W., Tsung, C.K., Shi, Q., Schierhorn, M., Stucky, G.D.Field-directed and confined molecular assembly of mesostructured materials: Basic principles and new opportunities. Chem. Mater. 20, 909 (2008)CrossRefGoogle Scholar
20.Forster, S., Zisenis, M., Wenz, E., Antonietti, M.Micellization of strongly segregated block copolymers. J. Chem. Phys. 104, 9956 (1996)CrossRefGoogle Scholar
21.Bhargava, P., Tu, Y.F., Zheng, J.X., Xiong, H.M., Quirk, R.P., Cheng, S.Z.D.Temperature-induced reversible morphological changes of polystyrene-block-poly(ethylene oxide) micelles in solution. J. Am. Chem. Soc. 129, 1113 (2007)CrossRefGoogle ScholarPubMed
22.Sun, J.M., Ma, D., Zhang, H., Wang, C.L., Bao, X.H., Su, D.S., Klein-Hoffmann, A., Weinberg, G., Mann, S.Phase evolution in the alkane-P123-water-TEOS quadru-component system: A feasible route to different complex mesostructured materials. J. Mater. Chem. 16, 1507 (2006)CrossRefGoogle Scholar
23.Davies, T.S., Ketner, A.M., Raghavan, S.R.Self-assembly of surfactant vesicles that transform into viscoelastic wormlike micelles upon heating. J. Am. Chem. Soc. 128, 6669 (2006)CrossRefGoogle ScholarPubMed
24.Zhou, G.W., Chen, Y.J., Yang, J.H., Yang, S.H.From cylindrical-channel mesoporous silica to vesicle-like silica with well defined multilamella shells and large inter-shell mesopores. J. Mater. Chem. 17, 2839 (2007)CrossRefGoogle Scholar
25.Liu, J., Yang, Q.H., Zhang, L., Jiang, D.M., Shi, X., Yang, J., Zhong, H., Li, C.Thioether-bridged mesoporous organosilicas: Mesophase transformations induced by the bridged organosilane precursor. Adv. Funct. Mater. 17, 569 (2007)CrossRefGoogle Scholar
26.Liu, J., Li, C.M., Yang, Q.H., Yang, J., Li, C.Morphological and structural evolution of mesoporous silicas in a mild buffer solution and lysozyme adsorption. Langmuir 23, 7255 (2007)CrossRefGoogle Scholar
27.Warren, S.C., Disalvo, F.J., Wiesner, U.Nanoparticle-tuned assembly and disassembly of mesostructured silica hybrids. Nat. Mater. 6, 156 (2007)CrossRefGoogle ScholarPubMed
28.Brinker, C.J., Lu, Y.F., Sellinger, A., Fan, H.Y.Evaporation-induced self-assembly: Nanostructures made easy. Adv. Mater. 11, 579 (1999)3.0.CO;2-R>CrossRefGoogle Scholar
29.Pevzner, S., Regev, O., Lind, A., Linden, M.Evidence for vesicle formation during the synthesis of catanionic templated mesoscopically ordered silica as studied by Cryo-TEM. J. Am. Chem. Soc. 125, 652 (2003)CrossRefGoogle ScholarPubMed
30.Yuan, M.J., Tang, J.W., Yu, C.Z., Chen, Y.H., Tu, B., Zhao, D.Y.The upper temperature limit in cooperative assembly of ordered mesoporous materials. Chem. Lett. 32, 660 (2003)CrossRefGoogle Scholar
31.Allinger, N.L., Rahman, M., Lii, J.H.A molecular mechanics force-field (Mm3) for alcohols and ethers. J. Am. Chem. Soc. 112, 8293 (1990)CrossRefGoogle Scholar
32.Tejedor-Tejedor, M.I., Paredes, L., Anderson, M.A.Evaluation of ATR-FTIR spectroscopy as an “in situ” tool for following the hydrolysis and condensation of alkoxysilanes under rich H2O conditions. Chem. Mater. 10, 3410 (1998)CrossRefGoogle Scholar
33.Tan, B., Rankin, S.E.Study of the effects of progressive changes in alkoxysilane structure on sol-gel reactivity. J. Phys. Chem. B 110, 22353 (2006)CrossRefGoogle ScholarPubMed
34.Zhao, D.Y., Sun, J.Y., Li, Q.Z., Stucky, G.D.Morphological control of highly ordered mesoporous silica SBA-15. Chem. Mater. 12, 275 (2000)CrossRefGoogle Scholar
35.Yu, C.Z., Yu, Y.H., Zhao, D.Y.Highly ordered large caged cubic mesoporous silica structures templated by triblock PEO–PBO–PEO copolymer. Chem. Commun. (Camb.) 575 (2000)CrossRefGoogle Scholar
36.Matos, J.R., Kruk, M., Mercuri, L.P., Jaroniec, M., Zhao, L., Kamiyama, T., Terasaki, O., Pinnavaia, T.J., Liu, Y.Ordered mesoporous silica with large cage-like pores: Structural identification and pore connectivity design by controlling the synthesis temperature and time. J. Am. Chem. Soc. 125, 821 (2003)CrossRefGoogle ScholarPubMed
37.da Silva, L.C.C., dos Santos, L.B.O., Abate, G., Cosentino, I.C., Fantini, M.C.A., Masini, J.C., Matos, J.R.Adsorption of Pb2+, Cu2+ and Cd2+ in FDU-1 silica and FDU-1 silica modified with humic acid. Microporous Mesoporous Mater. 110, 250 (2008)CrossRefGoogle Scholar
38.Azzam, T., Eisenberg, A.Control of vesicular morphologies through hydrophobic block length. Angew. Chem. Int. Ed. 45, 7443 (2006)CrossRefGoogle ScholarPubMed
39.Vanhest, J.C.M., Delnoye, D.A.P., Baars, M., Vangenderen, M.H.P., Meijer, E.W.Polystyrene-dendrimer amphiphilic block-copolymers with a generation-dependent aggregation. Science 268, 1592 (1995)CrossRefGoogle Scholar
40.Soo, P.L., Eisenberg, A.Preparation of block copolymer vesicles in solution. J. Polym. Sci., Part B: Polym. Phys. 42, 923 (2004)Google Scholar
41.Brinker, C.J., Scherer, G.W.Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, New York 1990)Google Scholar
42.Kirschhock, C.E.A., Kremer, S.P.B., Grobet, P.J., Jacobs, P.A., Martens, J.A.New evidence for precursor species in the formation of MFI zeolite in the tetrapropylammonium hydroxide-tetraethyl orthosilicate-water system. J. Phys. Chem. B 106, 4897 (2002)CrossRefGoogle Scholar
43.Pelster, S.A., Schrader, W., Schuth, F.Monitoring temporal evolution of silicate species during hydrolysis and condensation of silicates using mass spectrometry. J. Am. Chem. Soc. 128, 4310 (2006)CrossRefGoogle ScholarPubMed
44.Ruthstein, S., Schmidt, J., Kesselman, E., Talmon, Y., Goldfarb, D.Resolving intermediate solution structures during the formation of mesoporous SBA-15. J. Am. Chem. Soc. 128, 3366 (2006)CrossRefGoogle ScholarPubMed