Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T17:08:30.110Z Has data issue: false hasContentIssue false

Tree-like Ag nanostructures based on monolithic mesoporous silica

Published online by Cambridge University Press:  03 March 2011

Caixia Kan
Affiliation:
Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People’s Republic of China
Weiping Cai*
Affiliation:
Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People’s Republic of China
Herbert Hofmeister
Affiliation:
Max Planck Institute of Microstructure Physics, D-06120 Halle, Germany
*
a) Address all correspondence to this author. e-mail: wpcai@issp.ac.cn
Get access

Abstract

A novel tree-like nanostructured Ag crystal, with stems, branches, and leaves, has been synthesized by pre-forming Au seeds, soaking, and annealing, based on monolithic mesoporous silica. The obtained Ag nanotrees are of single-crystal nature and statistically symmetrical in geometry. Further experiments revealed that the interconnected channels of the porous silica, heating at low temperature, and the pre-formed Au seeds are crucial to form such structure. Its formation can be attributed to the low nucleation rate and preferentially unidirectional diffusion of Ag atoms to the Au seeds along interconnected channels. This nanostructured material is of great potential to be building blocks for assembling some mini-functional devices of the next generation. The current study is also of importance in studying the diffusion mechanism of single-crystal formation, and especially in improving our understanding of the underlying physical structure of both natural and synthetic porous materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Shi, J., Gider, S., Babcock, K. and Awschalom, D.D., Science 271, 937 (1996).CrossRefGoogle Scholar
2Favier, F., Walter, E., Zach, M., Benter, T. and Penner, R.M., Science 293, 2227 (2001).CrossRefGoogle Scholar
3Li, C.Z., He, H.X., Bogozi, A., Bunch, J.S. and Tao, N.J., Appl. Phys. Lett. 76, 1333 (2000).CrossRefGoogle Scholar
4Bogozi, A., Lam, O., He, H.X., Li, C.Z., Tao, N.J., Nagahara, L.A., Amlani, I. and Tsui, R., J. Am. Chem. Soc. 123, 4585 (2001).CrossRefGoogle Scholar
5Xia, Y.N., Yang, P.D., Sun, Y.G., Wu, Y.Y., Mayer, B., Gates, B., Yin, Y.D., Kim, F. and Yan, H.Q., Adv. Mater. 15, 353 (2003).CrossRefGoogle Scholar
6Han, Y.J., Kim, J.M. and Stucky, G.D., Chem. Mater. 12, 2068 (2000).CrossRefGoogle Scholar
7Huang, M.H., Choudrey, A. and Yang, P.D., Chem. Commun. 1063 (2000).CrossRefGoogle Scholar
8Sloan, J., Wright, D.M., Woo, H.G., Bailey, S., Brown, G., York, A.P.E., Coleman, K.S., Hutchison, J.L., and Green, M.L.H.: Chem. Commun. 699 (1999).Google Scholar
9Huang, L.M., Wang, H.T., Wang, Z.B., Mitra, A., Bozhilov, K.N. and Yan, Y.S., Adv. Mater. 14, 61 (2002).3.0.CO;2-Y>CrossRefGoogle Scholar
10Caswell, K.K., Bender, C.M. and Murphy, C.J., Nano Lett. 3, 667 (2003).CrossRefGoogle Scholar
11Xiong, Y.J., Xie, Y., Wu, C.Z., Yang, J., Li, Z.Q. and Xu, F., Adv. Mater. 15, 405 (2003).CrossRefGoogle Scholar
12Sun, Y.G., Yin, Y.D., Mayers, B., Herricks, T. and Xia, Y.N., Chem. Mater. 14, 4736 (2002).CrossRefGoogle Scholar
13Sun, Y.G., Yin, Y.D., Mayers, B., Herricks, T. and Xia, Y.N., Nano Lett. 3, 995 (2003).Google Scholar
14Bromann, K., Félix, C., Brune, H., Harbich, W., Monot, R., Butter, J. and Kern, K., Science 274, 956 (1996).CrossRefGoogle Scholar
15Alvareza, J., Lundgrenb, E., Torrellesc, X. and Ferrer, S., Surf. Sci. 464,165 (2000).Google Scholar
16Brune, H., Surface Science Reports 31, 121 (1998).CrossRefGoogle Scholar
17Witten, T.A., Sander, L.M. and Jr., , Phys. Rev. Lett. 47, 1400 (1981).CrossRefGoogle Scholar
18Meakin, P., Phys. Rev. Lett. 51, 1119 (1983).CrossRefGoogle Scholar
19Xiao, J.P., Xie, Y., Tang, R., Chen, M. and Tian, X.B., Adv. Mater. 13, 1887 (2001).3.0.CO;2-2>CrossRefGoogle Scholar
20Brune, H., Romalnexyk, C., Röder, H. and Kern, K., Nature 369, 469 (1994).CrossRefGoogle Scholar
21Brune, H., Röder, H., Bromann, K., Kern, K., Jacobsen, J., Stoltze, P., Jacobsen, K. and Nørskov, J., Surf. Sci. 349 L115 (1996).CrossRefGoogle Scholar
22Cai, W.P. and Zhang, L.D., J. Phys. Condens. Matter 9, 7257 (1997).Google Scholar
23Koone, N.D. and Zerda, T.W., J. Non-Cryst. Solids 183, 243 (1995).CrossRefGoogle Scholar
24Kreibig, U. and Genzel, L., Surf. Sci. 156, 678 (1985).CrossRefGoogle Scholar
25Shi, H.Z., Zhang, L.D. and Cai, W.P., J. Appl. Phys. 87, 1572 (2000).CrossRefGoogle Scholar
26Hofmeister, H., Miclea, P.T. and Mörke, W., Part. Part. Syst. Charact. 19, 359 (2002).3.0.CO;2-B>CrossRefGoogle Scholar
27Bi, H.J., Cai, W.P., Shi, H.Z. and Liu, X., Chem. Phys. Lett. 357, 249 (2002).CrossRefGoogle Scholar
28Polarz, S. and Antonietti, M.: Chem. Commun. 2593 (2002).Google Scholar