Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T22:41:10.406Z Has data issue: false hasContentIssue false

Time-resolved optical studies of oxide-encapsulated silicon during pulsed laser melting

Published online by Cambridge University Press:  31 January 2011

G. E. Jellison Jr.
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge. Tennessee 37831-6056
D. H. Lowndes
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge. Tennessee 37831-6056
J. W. Sharp
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge. Tennessee 37831-6056
Get access

Abstract

Nanosecond time-resolved reflectivity and ellipsometry experiments have been performed on (100) Si wafers encapsulated by 5.5–76.2 nm thick thermal oxides, using pulsed KrF (248 nm) laser energy densities sufficient to melt the Si beneath the oxide. Post-irradiation nulling ellipsometry, optical microphotography, and surface profiling measurements were carried out. It was found that the threshold energy density required to melt the Si varies with oxide thickness; this is explained primarily by the reflective properties of the oxide overlayer. The time-resolved reflectivity and ellipsometry measurements show that rippling of the SiO2 layer occurs on the 20–40 ns timescale and results in a decrease in specular reflectivity of the rippled silicon surface beneath. Optical model calculations suggest that pulsed laser annealing through a thick oxide layer results in a damaged near-surface silicon layer (∼ 30 nm thick); this layer contains defects that are probably responsible for the degraded performance of devices.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Semiconductors and Semimetals, edited by Wood, R. F., White, C. W., and Young, R. T. (Academic, New York, 1984), Vol. 23.Google Scholar
2Hill, C., AIP Conf. Proc. 50, 419 (1979).CrossRefGoogle Scholar
3Hill, C., Electrochem. Soc. Proc. 80-1, 26 (1980).Google Scholar
4Stephen, J., Smith, B. J., and Blamires, N. G., Laser and Electron Beam Processing of Materials, edited by White, C. W. and Peercy, P. S. (Academic, New York, 1980), p. 639.CrossRefGoogle Scholar
5Leas, J. M., Smith, P. J., Nagarajan, A., and Leighton, A., in Ref. 4, p. 645.Google Scholar
6Deshmukh, V. G. I., Webber, H. C., and McCaughan, D. V., Appl. Phys. Lett. 39, 251 (1981).CrossRefGoogle Scholar
7Fauchetand, P. A.Siegman, A. E., Appl. Phys. Lett. 40, 824 (1982).CrossRefGoogle Scholar
8Young, J. F., Sipe, J. E., and Driel, H. M. van, Phys. Rev. B 30, 2001 (1984).CrossRefGoogle Scholar
9Smirl, A., Boyd, I. W., Boggess, T. F., Moss, S. C., and Driel, H. M. van, J. Appl. Phys. 60, 1169 (1986).CrossRefGoogle Scholar
10Orlowski, T. E. and Richter, H., Appl. Phys. Lett. 45, 41 (1984).CrossRefGoogle Scholar
11Young, E. M. and Tiller, W. A., Appl. Phys. Lett. 50, 80 (1987); Appl. Phys. Lett. 50, 46 (1987).CrossRefGoogle Scholar
12Boyer, P. K., Emery, K. A., Zarnani, H., and Collins, G. J., Appl. Phys. Lett. 45, 979 (1984).CrossRefGoogle Scholar
13Lowndes, D. H., Jellison, G. E. Jr, and Wood, R. F., Phys. Rev. B 26, 6747 (1982).CrossRefGoogle Scholar
14Jellison, G. E. Jr, Lowndes, D. H., Mashburn, D. N., and Wood, R. F., Phys. Rev. B 34, 2407 (1986).CrossRefGoogle Scholar
15Jellison, G. E. Jr, and Lowndes, D. H., Appl. Opt. 24, 2948 (1985).CrossRefGoogle Scholar
16Jellison, G. E. Jr, and Lowndes, D. H., Appl. Phys. Lett. 47, 718 (1985).CrossRefGoogle Scholar
17Carslaw, H. S. and Jaeger, J. C., Conduction of Heat in Solids (Oxford, London, 1959).Google Scholar
18Thermophysical Properties of Matter, edited by Touloukin, Y. S., Powell, R. W., Ho, C. Y., and Klemens, P. G. (Plenum, New York, 1970).Google Scholar
19Aspnes, D. E. and Studna, A., Phys. Rev. B 27, 985 (1983).CrossRefGoogle Scholar
20Jellison, G. E. Jr, and Lowndes, D. H., Appl. Phys. Lett. 51, 352 (1987).CrossRefGoogle Scholar
21Jellison, G. E. Jr, and Burke, H. H., J. Appl. Phys. 60, 841 (1986).CrossRefGoogle Scholar
22Jellison, G. E. Jr, and Modine, F. A., Appl. Phys. Lett. 41, 180 (1982).CrossRefGoogle Scholar
23Bruggeman, D. A. G., Ann. Phys. (Leipzig) 24, 636 (1935).CrossRefGoogle Scholar