Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T15:27:33.444Z Has data issue: false hasContentIssue false

Threading defect elimination in GaN nanowires

Published online by Cambridge University Press:  08 June 2011

Stephen D. Hersee*
Affiliation:
Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106
Ashwin K. Rishinaramangalam
Affiliation:
Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106
Michael N. Fairchild
Affiliation:
Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106
Lei Zhang
Affiliation:
Nanocrystal Corporation, Albuquerque, New Mexico 87124
Petros Varangis
Affiliation:
Nanocrystal Corporation, Albuquerque, New Mexico 87124
*
a)Address all correspondence to this author. e-mail: shersee@chtm.unm.edu
Get access

Abstract

This study describes the elimination of threading dislocations (TDs) in GaN nanostructures. Cross-sectional transmission electron microscopy (XTEM) analysis reveals that the nominal [0001] line direction of a TD changes when it enters a GaN nanostructure and the dislocation then terminates at a sidewall facet. It is suggested that the driving force for this process is the reduction of dislocation line energy, and for a pure-edge dislocation, this TD elimination process can be accomplished simply by dislocation climb. This mechanism is active whenever a threading defect is in close proximity to a surface. Preliminary XTEM analysis of defects in AlGaN and InGaN core–shell growth onto GaN nanostructures is also shown. Although more work is required to improve the quality of core–shell InGaN epitaxial growth, nanostructures appear to offer a route to defect-free, nonpolar GaN-based devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hersee, S.D., Sun, X.Y., and Wang, X.: The controlled growth of GaN nanowires. Nano Lett. 6, 1808 (2006).CrossRefGoogle ScholarPubMed
2.Yoo, J., Hong, Y.-J., An, S.J., Yi, G.-C., Chon, B., Joo, T., Kim, J.-W., and Lee, J.-S.: Photoluminescent characteristics of Ni-catalyzed GaN nanowires. Appl. Phys. Lett. 89, 043124 (2006).CrossRefGoogle Scholar
3.Talin, A., Leonard, F., Swartzentruber, B.S., Wang, X., and Hersee, S.D.: Unusually strong space-charge-limited current in thin wires. Phys. Rev. Lett. 101, 076802 (2008).CrossRefGoogle ScholarPubMed
4.Talin, A.A., Swartzentruber, B.S., Leonard, F., Wang, X., and Hersee, S.D.: Electrical transport in GaN nanowires grown by selective epitaxy. J. Vac. Sci. Technol. B 27, 2040 (2009).CrossRefGoogle Scholar
5.unpublished work, paper in preparation.Google Scholar
6.Kavanagh, K.L.: Misfit dislocations in nanowire heterostructures. Semicond. Sci. Technol. 25, 024006 (2010).CrossRefGoogle Scholar
7.Kim, H.M.: Nanoscale ultraviolet-light-emitting diodes using wide-bandgap gallium nitride nanorods. Adv. Mater. 15, 567 (2003).CrossRefGoogle Scholar
8.Hersee, S.D., Fairchild, M.N., Rishinaramangalam, A.K., Ferdous, M., Zhang, L., Varangis, P., Swartzentruber, B., and Talin, A.A.: GaN nanowire light emitting diodes based on templated and scalable nanowire growth process. Electron. Lett. 45, 75 (2009).CrossRefGoogle Scholar
9.Kishino, K., Kikuchi, A., Sekiguchi, H., and Ishizawa, S.: InGaN/GaN nanocolumn LEDs emitting from blue to red. SPIE Proc. 6473, 64730T (2007).CrossRefGoogle Scholar
10.Ferdous, M., Wang, X., Fairchild, M.N., and Hersee, S.D.: Effect of threading defects on InGaN/GaN multiple quantum well light emitting diodes. Appl. Phys. Lett. 91, 231107 (2007).CrossRefGoogle Scholar
11.Mukai, T., Takekawa, K., and Nakamura, S.: InGaN-based blue light-emitting diodes grown on epitaxially laterally overgrown GaN substrates. Jpn. J. Appl. Phys. 37(Part 2), L839 (1998).CrossRefGoogle Scholar
12.Brueck, S.R.J.: Optical and interferometric lithography—Nanotechnology enablers. Proc. IEEE 93, 1704 (2005).CrossRefGoogle Scholar
13.Ferdous, M.S., Sun, X.Y., Wang, X., Fairchild, M.N., and Hersee, S.D.: Photoelectrochemical etching measurement of defect density in GaN grown by nanoheteroepitaxy. J. Appl. Phys. 99, 096105 (2006).CrossRefGoogle Scholar
14.Tanaka, S., Kawaguchi, Y., Sawaki, N., Hibino, M., and Hiramatsu, K.: Structural characterization of GaN laterally overgrown on a (111) Si substrate. Appl. Phys. Lett. 79, 955 (2001).CrossRefGoogle Scholar
15.Béré, A. and Serra, A.: Atomic structure of dislocation cores in GaN. Phys. Rev. B 65, 205323 (2002).CrossRefGoogle Scholar
16.Elsner, J., Jones, R., Sitch, P.K., Porezag, V.D., Elstner, M., Frauenheim, Th., Heggie, M.I., Öberg, S., and Briddon, P.R.: Theory of threading edge and screw dislocations in GaN. Phys. Rev. Lett. 79, 3672 (1997).CrossRefGoogle Scholar
17.Yong, A.M., Soh, C.B., Zhang, X.H., Chow, S.Y., and Chua, S.J.: Investigation of V-defects formation in InGaN/GaN multiple quantum well grown on sapphire. Thin Solid Films 515, 4496 (2007).CrossRefGoogle Scholar