Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T00:06:36.688Z Has data issue: false hasContentIssue false

Thermodynamic stability field of the 123 and 124 phases in the Y2O3–BaO–Cu–O system

Published online by Cambridge University Press:  03 March 2011

Zhigang Zhou
Affiliation:
Department of Geological and Geophysical Sciences and Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544
Alexandra Navrotsky
Affiliation:
Department of Geological and Geophysical Sciences and Princeton Materials Institute, Princeton University, Princeton, New Jersey 08544
Get access

Abstract

The partial molar entropy of solution of oxygen in YBa2Cu3Ox, δsO, has been computed using equilibrium data and the recently measured partial molar enthalpy of oxygen. While δhO is independent of oxygen content (6 < x < 7), δsO depends on x. The po2, T location of phase equilibrium between the 123 and 124 superconducting phases is calculated. The standard free energies of interactions of the superconducting phases with carbon dioxide (CO2) and water vapor (H2O) have been assessed. The free energies of carbonation of the fully oxidized 123 and 124 phases are −323 ± 22 kJ mol−1 and −291 ± 32 kJ mol−1, respectively. The free energies of hydration of the 123 and 124 are −397 ± 22 kJ mol−1 and −469 ± 32 kJ mol−1, respectively. These large exothermic values show that degradation of these superconductors at ambient conditions is thermodynamically favorable.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Zhou, Z. and Navrotsky, A., J. Mater. Res. 7, 2920 (1992).CrossRefGoogle Scholar
2Nakahare, D. S., Fisanick, G. J., Yan, M. F., van Dover, R. B., Boone, T., and Moore, R., J. Cryst. Growth 85, 639 (1987).CrossRefGoogle Scholar
3Seibt, E. W. and Zalar, A., Mater. Lett. 7, 256 (1988).CrossRefGoogle Scholar
4Fjellvåg, H., Karen, P., Kjekshus, A., Kofstad, P., and Norby, T., Acta Chem. Scand. A 42, 178 (1988).CrossRefGoogle Scholar
5Shaw, T. M., Shinde, S. L., Dimos, D., Cook, R. F., Duncombe, P. R., and Kroll, C., J. Mater. Res. 4, 248 (1989).Google Scholar
6Greenlief, C. M., Bringley, J. F., Scott, B. A., Gates, S. M., Trail, S. S., and D'Emic, C., private communication.Google Scholar
7Keller, S. W., Leary, K. J., Stacy, A. M., and Michaels, J. N., Mater. Lett. 5, 357 (1987).CrossRefGoogle Scholar
8Lindemer, T. B., Hunley, J. F., Gates, J. E., Sutton, A. L. Jr., Brynestad, J., Hubbard, C. R., and Gallagher, P. K., J. Am. Ceram. Soc. 72, 1775 (1989).CrossRefGoogle Scholar
9Parks, M. E., Navrotsky, A., Mocala, K., Takayama-Muromachi, E., Jacobson, A., and Davis, P. K., J. Solid State Chem. 79, 53 (1989); Erratum: J. Solid State Chem. 83, 218 (1989).CrossRefGoogle Scholar
10Gokcen, N. A., Brown, R. R., Oden, L. L., and Wells, J. D., in High Temperature Superconducting Compounds: Processing and Related Properties, edited by Whang, S. H. and DasGupta, A. (The Minerals, Metals and Materials Society, 1989), p. 527.Google Scholar
11Tetenbaum, M., Tani, B., Czech, B., and Balander, M., Physica C 158, 377 (1989).CrossRefGoogle Scholar
12Meuffels, P., Naeven, R., and Wenzl, H., Physica C 161, 539 (1989).CrossRefGoogle Scholar
13Karpinski, J., Kaldis, E., Jilek, E., Rusiecki, S., and Bucher, B., Nature 336, 660 (1988).CrossRefGoogle Scholar
14Karpinski, J., Rusiecki, S., Kaldis, E., Bucher, B., and Jilek, E., Physica C 160, 449 (1989).CrossRefGoogle Scholar
15Balachandran, U., Biznek, M. E., Tomlins, G. W., Veal, B. W., and Poeppel, R. B., Physica C 165, 335 (1990).CrossRefGoogle Scholar
16Jin, S., O'Bryan, H. M., Gallagher, P. K., Tiefel, T. H., Cava, R. J., Fastnacht, R. A., and Kammlott, G. W., Physica C 165, 415 (1990).Google Scholar
17Magman, D. D., Evans, W. H., Parker, V. B., Schumm, R. H., Halow, I., Bailey, S. M., Churney, K. L., and Nuttall, R. L., J. Phys. Chem. Ref. Data 11, Suppl.2 (1982).Google Scholar
18Gallagher, P. K., Adv. Ceram. Mater. 2 (3B), Special Issue, 632 (1987).CrossRefGoogle Scholar
19Strobel, P., Capponi, J. J., Marezio, M., and Monod, P., Solid State Commun. 64, 513 (1987).CrossRefGoogle Scholar
20Marucco, J-F. and Gledel, C., Physica C 160, 73 (1989).CrossRefGoogle Scholar
21Kishio, K., Shimoyama, J., Hasegawa, T., Kitazawa, K., and Fueki, K., Jpn. J. Appl. Phys. 26, L1228 (1987).CrossRefGoogle Scholar
22Verseij, H. and Bruggink, W. H. M., J. Phys. Chem. Solids 50, 75 (1989).CrossRefGoogle Scholar
23Brabers, V. A. M., de Jonge, W. J. M., Bosch, L. A., Steen, C. V. D., de Groote, A. M. W., Verheyen, A. A., and Vennix, C. W. H. M., Mater. Res. Bull. XXIII, 197 (1988).CrossRefGoogle Scholar
24Gerdanian, P., Picard, C., and Marucco, J-F., Physica C 157, 180 (1988).CrossRefGoogle Scholar
25Specht, E. D., Sparks, C. J., Dhere, A. G., Brynestad, J., Cavin, O. B., Kroeger, D. M., and Oye, H. A., Phys. Rev. B: Condens. Matter 37, 7426 (1988).CrossRefGoogle Scholar
26Yamaguchi, S., Terabe, K., Saito, A., Yahage, S., and Iguchi, Y., Jpn. J. Appl. Phys. 27, L179 (1988).CrossRefGoogle Scholar
27Oesterreicher, H. and Smith, M., Mater. Res. Bull. XXII, 1709 (1987).CrossRefGoogle Scholar
28Morss, L. R., Soonnenberger, D. C., and Thorn, R. J., Inorg. Chem. 27, 2106 (1988).Google Scholar
29TRENDS 90, A Compendium on Global Change, Carbon Dioxide Information Analysis Center, ORNL, P.O. Box 2008, Oak Ridge, TN.Google Scholar
30Shinozaki, K., Nanjyo, A., Mizutani, N., and Nobuyasu, K., Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi 96, 421 (1988).CrossRefGoogle Scholar
31Sheyman, M. S., Ghurin, S. A., Kamelova, G. P., Shvetsova, G. K., and Nikolaev, P. I., XII All-Union Conf. on Chemical Thermodynamics and Calorimetry, Sept. 13–15, 1988, Gorky, USSR.Google Scholar
32Shaviv, R., Westrum, E. F. Jr., Brown, R. J. C., Sayer, M., Yu, X., and Weir, R. D., J. Chem. Phys. 92, 6794 (1990).Google Scholar
33Junod, A., Eckert, D., Graf, T., Kaldis, E., Karpinski, J., Rusiecki, S., Sanchez, D., Triscone, G., and Muller, J., Physica C 168, 47 (1990).CrossRefGoogle Scholar
34Gavrichev, K. S., Gorbunov, V. E., Konovalova, I. A., Lazarev, V. B., Tishchenko, E. A., and Shaplygin, I. S., Izv. Acad USSR, Neorg. Mater. 24, 343 (1988).Google Scholar
35Robie, R. A., Hemingway, B. S., and Fisher, J. R., U.S. Geol. Survey Bull. 1452 (1979).Google Scholar
36Voronin, G. F. and Degterov, S. A., Physica C 176, 387 (1991).CrossRefGoogle Scholar
37Schmalzried, H. and Navrotsky, A., Festkorperthermodynamik (Akcademic Verlag, Berlin, Germany, 1978), p. 120Google Scholar