Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T00:40:21.379Z Has data issue: false hasContentIssue false

Thermally stimulated luminescence and electron paramagnetic resonance studies of Eu3+-doped yttrium borate

Published online by Cambridge University Press:  01 May 2006

M. Anitha
Affiliation:
Rare Earth Development Section, Bhabha Atomic Research Center, Mumbai—400 085, India
Manoj Mohapatra
Affiliation:
Radiochemistry Division, Bhabha Atomic Research Center, Mumbai—400 085, India
R.M. Kadam*
Affiliation:
Radiochemistry Division, Bhabha Atomic Research Center, Mumbai—400 085, India
T.K. Seshagiri
Affiliation:
Radiochemistry Division, Bhabha Atomic Research Center, Mumbai—400 085, India
A.K. Tyagi
Affiliation:
Chemistry Division, Bhabha Atomic Research Center, Mumbai—400 085, India
V. Natarajan
Affiliation:
Radiochemistry Division, Chemistry Division, Bhabha Atomic Research Center, Mumbai—400 085, India
*
a) Address all correspondence to this author. e-mail: rmkadam2003@yahoo.co.in
Get access

Abstract

Thermally stimulated luminescence (TSL) and electron paramagnetic resonance (EPR) studies were carried out on gamma-irradiated europium-doped yttrium borate samples in the temperature range 300–600 K. TSL studies showed the presence of two glow peaks, a relatively weaker one at 390 K and an intense one at around 550 K. Room-temperature EPR spectrum of irradiated samples revealed the formation of two hole trapped radicals, namely, BO32− and O2. Temperature variation studies showed drastic reduction in the EPR signal intensities of these radicals around 390 and 550 K indicating thermal destruction of O2 and BO32− radicals, respectively. The observed TSL emission is caused by the recombination of thermally released holes from O2 and BO32− radical ions with electrons. The energy released in electron-hole recombination process is used for the excitation of Eu3+ ion resulting in TSL glow peaks. TSL emission studies confirmed that Eu3+ acts as luminescent center for both the peaks.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ren, M., Lin, J.H., Dong, Y., Yang, L.Q., Su, M.Z., You, L.P.: Structure and phase transition of GdBO3. Chem. Mater. 11, 1576 (1999).CrossRefGoogle Scholar
2.Jüstel, T., Krupa, J.C., Wiechert, D.U.: VUV spectroscopy of luminescent materials for plasma display panels and Xe discharge lamps. J. Lumin. 93, 179 (2001).CrossRefGoogle Scholar
3.Kellendonk, F., Blasse, G.: Luminescence and energy transfer in EuAl3B4O12. J. Chem. Phys. 75, 561 (1981).CrossRefGoogle Scholar
4.Gorller-Warland, C., Vandevelde, P., Hendrickx, I., Porcher, P., Krupa, J.C., King, G.S.D.: Spectroscopic study and crystal field analysis of Eu3+ in YAl3(BO3)4 huntite matrix. Inorg. Chim. Acta. 143, 259 (1988).CrossRefGoogle Scholar
5.Jiang, X-C., Yan, C-H., Sun, L-D., Wei, Z-G., Liao, C-S.: Hydrothermal homogenous urea precipitation of hexagonal YBO3:Eu3+ nanocrystals with improved luminescent properties. J. Solid State Chem. 175, 245 (2003).CrossRefGoogle Scholar
6.Tukia, M., Hölsä, J., Lastusaari, M., Niittykoski, J.: Eu3+ doped rare-earth orthoborates, RBO3 (R = Y, La and Gd), obtained by combustion synthesis. Opt. Mater. 27, 1516 (2005).CrossRefGoogle Scholar
7.Boyer, D., Chadeyron, G., Mahiou, R., Caperaa, C., Cousseins, J.: Synthesis dependent luminescence efficiency in Eu3+ doped polycrystalline YBO3. J. Mater. Chem. 9, 211 (1999).CrossRefGoogle Scholar
8.Mithlesh, R.M., Kadam, K., Seshagiri, T.K., Natarajan, V., Page, A.G.: TSL and EPR studies of SrBPO5 doped with CeO2 and co-doped with CeO2 and Sm2O3. J. Radioanal. Nucl. Chem. 262, 633 (2004).Google Scholar
9.Porwal, N.K., Kadam, R.M., Seshagiri, T.K., Natarajan, V., Dhobale, A.R., Page, A.G.: ESR and TSL studies on MgB4O7 doped with Tm: Role of BO32− in TSL peak at 470 K. Radiat. Meas. 40, 69 (2005).CrossRefGoogle Scholar
10.Natarajan, V., Seshagiri, T.K., Kadam, R.M., Sastry, M.D.: SO4–SO3 radical pair formation in Ce doped and Ce, U co-doped K3Na(SO4)2: EPR evidence and its role in TSL. Radiat. Meas. 35, 361 (2002).CrossRefGoogle Scholar
11.Newnham, R.E., Redman, M.J., Santoro, R.P.: Crystal structure of yttrium and other rare earth borates. J. Am. Ceramic Soc. 46, 253 (1963).CrossRefGoogle Scholar
12.Chadeyron, G., El-Ghozzi, M., Mahiou, R., Arbus, A., Cousseins, J.C.: Revised structure of the orthoborate YBO3. J. Solid State Chem. 128, 261 (1997).CrossRefGoogle Scholar
13.Chadeyron, G., Mahiou, R., El-Ghozzi, M., Arbus, A., Zambon, D., Cousseins, J.C.: Luminescence of the orthoborate YBO3:Eu3+: Relationship with crystal structure. J. Lumin. 72–74, 564 (1994).Google Scholar
14.Zhang, Q.Y., Pita, K., Kam, C.H.: Sol-gel derived zinc silicate phosphor films for full-colour display applications. J. Phys. Chem. Solids 64, 333 (2003).CrossRefGoogle Scholar
15.Zhang, W., Xie, P., Duan, C., Yan, K., Yin, M., Lou, L., Xia, S., Krupa, J.C.: Preparation and size effects on concentration quenching of nanocrystalline Y2SiO5:Eu. Chem. Phys. Lett. 292, 133 (1998).CrossRefGoogle Scholar
16.Dhanaraj, J., Jagannathan, R., Kutty, T.R.N., Lu, C.H.: Photoluminescence characteristic of Y2O3:Eu3+ nanophosphors prepared using sol-gel thermolysis. J. Phys. Chem. B 105, 11098 (2001).CrossRefGoogle Scholar
17.Hangleiter, T., Koschnick, F.K., Spaeth, J-M., Nuttall, R.H.D., Eachus, R.S.: Temperature dependence of the photostimulated luminescence of x-irradiated BaFBr:Eu2+. J. Phys. Condens. Matter. 2, 6837 (1990).CrossRefGoogle Scholar
18.Karthikeyani, A., Jagannathan, R.: Eu2+ luminescence in stillwellite-type SrBPO5− a new potential x-ray storage phosphor. J. Lumin. 86, 79 (2000).CrossRefGoogle Scholar
19.Wang, K.M., Lunsford, J.H.: An electron paramagnetic resonance study of Y-type zeolites. III, O2− mAIHY, ScY and ZaY zeolites. J. Phys. Chem. 74, 1165 (1971).Google Scholar
20.Naccache, C., Meriaudeau, P., Che, M., Tench, A.J.: Identification of oxygen species adsorbed on reduced titanium dioxide. Trans. Faraday Soc. 67, 506 (1971).CrossRefGoogle Scholar
21.Sook, L., Bray, P.J.: Electron-spin-resonance studies of irradiated glasses containing boron. J. Chem. Phys. 39, 2863 (1963).Google Scholar
22.Sook, L., Bray, P.J.: ESR studies of irradiated alkali borate glasses with high alkali oxide content. J. Chem. Phys. 40, 2982 (1964).Google Scholar
23.Griscom, D.L., Taylor, P.C., Ware, D.A., Bray, P.J.: ESR studies of lithium borate glasses and compounds γ irradiated at 77 K for a new interpretation of the trapped-hole centres associated with boron. J. Chem. Phys. 48, 5158 (1968).CrossRefGoogle Scholar
24.Koschnick, X., Spaeth, J-M., Eachus, S.R.: The influence of oxide impurity on the generation by x-irradiation of F centres in BaFBr. J. Phys.: Condens. Matter. 4, 3015 (1992).Google Scholar
25.Pawlik, T.H., Dierolf, V., Spaeth, J-M.: An electron nuclear double resonance study of the F center in CsBr. J. Phys.: Condens. Matter 9, 1857 (1997).Google Scholar
26.Iwabuchi, Y., Umemoto, C., Takahashi, K., Shionoya, S.: Photostimulated luminescence process in BaFBr:Eu2+ containing F(Br−) and F(F−) centers. J. Lumin. 48&49((part 2)), 481 (1991).CrossRefGoogle Scholar