Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T00:26:34.999Z Has data issue: false hasContentIssue false

Thermal and plastic behavior of nanoglasses

Published online by Cambridge University Press:  29 May 2014

Oliver Franke*
Affiliation:
Department of Aerospace and Mechanical Engineering and The Mork Family Department for Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089
Daniel Leisen
Affiliation:
Institute for Applied Materials, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
Herbert Gleiter
Affiliation:
Herbert Gleiter Institute of Nanoscience of the Nanjing University of Science and Technology, Nanjing, China; and Institute for Nanotechnology, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
Horst Hahn
Affiliation:
Institute for Nanotechnology, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany; and KIT-TUD Joint Research Laboratory Nanomaterials, Institute of Materials Science, Technische Universitaet Darmstadt (TUD), 64287 Darmstadt, Germany
*
a)Address all correspondence to this author. e-mail: ofranke@usc.edu
Get access

Abstract

The mechanical and thermal behavior of nanoglasses (NGs) were studied with a focus on the effect of the microstructure. The thermal expansion was measured to track changes in excess free volume during heating. It was found that the excess free volume, which is initially more dominant in the interphase region between the denser amorphous particles, is partially lost as well as redistributed during annealing. This relaxation during heating causes the nanoglass to behave like a melt-spun ribbon after heating while remaining amorphous. Nanomechanical tests were used to probe the local incipient plasticity and the influence of the interphase region. This interphase appears to affect the mechanical response of the NGs by inhibiting the propagation of shear bands and thus offers a novel approach for the introduction of plasticity in bulk metallic glasses. The results suggest that the NGs consist of two distinct amorphous phases with different glass transition temperatures.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ghafari, M., Hahn, H., Gleiter, H., Sakurai, Y., Itou, M., and Kamali, S.: Evidence of itinerant magnetism in a metallic nanoglass. Appl. Phys. Lett. 101(24), 243104 (2012).CrossRefGoogle Scholar
Fang, J.X., Vainio, U., Puff, W., Wurschum, R., Wang, X.L., Wang, D., Ghafari, M., Jiang, F., Sun, J., Hahn, H., and Gleiter, H.: Atomic structure and structural stability of Sc75Fe25 nanoglasses. Nano Lett. 12(1), 458 (2012).CrossRefGoogle ScholarPubMed
Ghafari, M., Kohara, S., Hahn, H., Gleiter, H., Feng, T., Witte, R., and Kamali, S.: Structural investigations of interfaces in Fe90Sc10 nanoglasses using high-energy x-ray diffraction. Appl. Phys. Lett. 100(13), 133111 (2012).CrossRefGoogle Scholar
Gleiter, H.: Nanostructured materials: Basic concepts and microstructure. Acta Mater. 48(1), 1 (2000).CrossRefGoogle Scholar
Wang, X.D., Cao, Q.P., Jiang, J.Z., Franz, H., Schroers, J., Valiev, R.Z., Ivanisenko, Y., Gleiter, H., and Fecht, H.J.: Atomic-level structural modifications induced by severe plastic shear deformation in bulk metallic glasses. Scr. Mater. 64(1), 81 (2011).CrossRefGoogle Scholar
Chen, X.T.S.N., Takeuchi, A., Nakayama, K.S., Wu, H.K., Esashi, M., Inoue, A., and Louzguine-Luzgin, D.V.: A representative of a new class of materials: Nanograined metallic glasses showing unique properties. AIP Conf. Proc. 1518, 682 (2013).CrossRefGoogle Scholar
Ritter, Y., Sopu, D., Gleiter, H., and Albe, K.: Structure, stability and mechanical properties of internal interfaces in Cu64Zr36 nanoglasses studied by MD simulations. Acta Mater. 59(17), 6588 (2011).CrossRefGoogle Scholar
Sopu, D., Albe, K., Ritter, Y., and Gleiter, H.: From nanoglasses to bulk massive glasses. Appl. Phys. Lett. 94(19), 191911 (2009).CrossRefGoogle Scholar
Schuh, C.A., Lund, A.C., and Nieh, T.G.: New regime of homogeneous flow in the deformation map of metallic glasses: elevated temperature nanoindentation experiments and mechanistic modeling. Acta Mater. 52(20), 5879 (2004).CrossRefGoogle Scholar
Schuh, C.A. and Nieh, T.G.: A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater. 51(1), 87 (2003).CrossRefGoogle Scholar
Schuh, C.A., Hufnagel, T.C., and Ramamurty, U.: Mechanical behavior of amorphous alloys. Acta Mater. 55(12), 4067 (2007).CrossRefGoogle Scholar
Argon, A.S.: Plastic-deformation in metallic glasses. Acta Metall. 27(1), 47 (1979).CrossRefGoogle Scholar
Suryanarayana, C.: Mechanical behavior of emerging materials. Mater. Today 15(11), 486 (2012).CrossRefGoogle Scholar
Hays, C.C., Kim, C.P., and Johnson, W.L.: Improved mechanical behavior of bulk metallic glasses containing in situ formed ductile phase dendrite dispersion. Mater. Sci. Eng., A 304306, 650 (2001).CrossRefGoogle Scholar
Calin, M., Eckert, J., and Schultz, L.: Improved mechanical behavior of Cu–Ti-based bulk metallic glass by in situ formation of nanoscale precipitates. Scr. Mater. 48(6), 653 (2003).CrossRefGoogle Scholar
Eckert, J., Das, J., Pauly, S., Duhamel, C., Kim, K.B., Yi, S., and Wang, W.H.: Impact of microstructural inhomogenities on the ductility of bulk metallic glasses. Mater. Trans. 48(7), 1806 (2007).CrossRefGoogle Scholar
Chen, Y.M., Ohkubo, T., Mukai, T., and Hono, K.: Structure of shear bands in Pd40Ni40P20 bulk metallic glass. J. Mater. Res. 24(1), 1 (2009).CrossRefGoogle Scholar
Shi, Y. and Falk, M.L.: Does metallic glass have a backbone? The role of percolating short range order in strength and failure. Scr. Mater. 54(3), 381 (2006).CrossRefGoogle Scholar
Ritter, Y. and Albe, K.: Thermal annealing of shear bands in deformed metallic glasses: Recovery mechanisms in Cu64Zr36 studied by molecular dynamics simulations. Acta Mater. 59(18), 7082 (2011).CrossRefGoogle Scholar
Pampillo, C.A.: Localized shear deformation in a glassy metal. Scr. Metall. 6(10), 915 (1972).CrossRefGoogle Scholar
Jiang, F.E.P.W.H. and Atzmon, M.: Mechanical behavior of shear bands and the effect of their relaxation in a rolled amorphous Al-based alloy. Acta Mater. 53, 3469 (2005).CrossRefGoogle Scholar
Koebrugge, G.W., Sietsma, J., and van den Beukel, A.: Structural relaxation in amorphous Pd40Ni40P20. Acta Metall. Mater. 40(4), 753 (1992).CrossRefGoogle Scholar
Shibutani, Y., Wakeda, M., Ogata, S., and Park, J.: Computational relationship of deformation behavior and materials strength of amorphous alloys to short-ranged local structures. In THERMEC 2006, Pts 1-5, Chandra, T., Tsuzaki, K., Militzer, M., and Ravindran, C. eds.; Trans Tech Publications Ltd: Switzerland, 2007, 1911.Google Scholar
Chen, N., Louzguine-Luzgin, D.V., Xie, G.Q., Sharma, P., Perepezko, J.H., Esashi, M., Yavari, A.R., and Inoue, A.: Structural investigation and mechanical properties of a representative of a new class of materials: nanograined metallic glasses. Nanotechnology 24(4), 045610 (2013).CrossRefGoogle ScholarPubMed
Fang, J.X., Vainio, U., Puff, W., Wurschum, R., Wang, X.L., Wang, D., Ghafari, M., Jiang, F., Sun, J., Hahn, H., and Gleiter, H.: Atomic structure and structural stability of Sc75Fe25 nanoglasses. Nano Lett. 12 (9), 5058 (2012).CrossRefGoogle ScholarPubMed
Eberl, C., Gianola, D.S., and Hemker, K.J.: Mechanical characterization of coatings using microbeam bending and digital image correlation techniques. Exp. Mech. 50(1), 85 (2010).CrossRefGoogle Scholar
Yavari, A.R., Moulec, A.L., Inoue, A., Nishiyama, N., Lupu, N., Matsubara, E., Botta, W.J., Vaughan, G., Di Michiel, M., and Kvick, Ö.: Excess free volume in metallic glasses measured by x-ray diffraction. Acta Mater. 53(6), 1611 (2005).CrossRefGoogle Scholar
Chen, N., Frank, R., Asao, N., Louzguine-Luzgin, D.V., Sharma, P., Wang, J.Q., Xie, G.Q., Ishikawa, Y., Hatakeyama, N., Lin, Y.C., Esashi, M., Yamamoto, Y., and Inoue, A.: Formation and properties of Au-based nanograined metallic glasses. Acta Mater. 59(16), 6433 (2011).CrossRefGoogle Scholar
Packard, C.E., Franke, O., Homer, E.R., and Schuh, C.A.: Nanoscale strength distribution in amorphous versus crystalline metals. J. Mater. Res. 25(12), 2251 (2010).CrossRefGoogle Scholar
Packard, C.E. and Schuh, C.A.: Initiation of shear bands near a stress concentration in metallic glass. Acta Mater. 55(16), 5348 (2007).CrossRefGoogle Scholar
Shi, Y.F. and Falk, M.L.: Stress-induced structural transformation and shear banding during simulated nanoindentation of a metallic glass. Acta Mater. 55(13), 4317 (2007).CrossRefGoogle Scholar