Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T23:06:53.103Z Has data issue: false hasContentIssue false

Synthesis of TiO2 nanosheet photocatalysts from exfoliation of TiS2 and hydrothermal treatment

Published online by Cambridge University Press:  18 June 2018

Hangkun Jing
Affiliation:
Materials Science and Engineering, School for Engineering of Matter, Transport and Energy; Nanosystems Engineering Research Center for Nanotechnology – Enabled Water Treatment, Arizona State University, Tempe, Arizona 85287-6106, USA
Qian Cheng
Affiliation:
Materials Science and Engineering, School for Engineering of Matter, Transport and Energy; Nanosystems Engineering Research Center for Nanotechnology – Enabled Water Treatment, Arizona State University, Tempe, Arizona 85287-6106, USA
J. Mark Weller
Affiliation:
Materials Science and Engineering, School for Engineering of Matter, Transport and Energy; Nanosystems Engineering Research Center for Nanotechnology – Enabled Water Treatment, Arizona State University, Tempe, Arizona 85287-6106, USA
Ximo S. Chu
Affiliation:
Materials Science and Engineering, School for Engineering of Matter, Transport and Energy; Nanosystems Engineering Research Center for Nanotechnology – Enabled Water Treatment, Arizona State University, Tempe, Arizona 85287-6106, USA
Qing Hua Wang
Affiliation:
Materials Science and Engineering, School for Engineering of Matter, Transport and Energy; Nanosystems Engineering Research Center for Nanotechnology – Enabled Water Treatment, Arizona State University, Tempe, Arizona 85287-6106, USA
Candace K. Chan*
Affiliation:
Materials Science and Engineering, School for Engineering of Matter, Transport and Energy; Nanosystems Engineering Research Center for Nanotechnology – Enabled Water Treatment, Arizona State University, Tempe, Arizona 85287-6106, USA
*
a)Address all correspondence to this author. e-mail: candace.chan@asu.edu
Get access

Abstract

TiO2 nanomaterials with platelet or nanosheet morphologies can offer improved properties for photocatalytic applications, but established methods to produce them typically require structure-directing agents since anatase-phase TiO2 does not have a layered structure. In the present work, the preparation of TiO2 nanosheets by the chemical oxidation of TiS2 nanosheets is demonstrated. Electrochemical exfoliation of bulk TiS2 into TiS2 nanosheets, followed by the hydrothermal treatment at 180 °C for 14 h is performed. The results show that polycrystalline TiO2 nanosheets with the anatase structure are formed, and that the nanosheet morphology can still be maintained after the hydrothermal treatment. The TiO2 nanosheets show good photocatalytic activity for the degradation of methylene blue, but the performance is negatively affected by the residual carbon black that was needed in the TiS2 electrode to enable electrochemical exfoliation. These results show that conversion of TiS2 nanosheets to TiO2 nanosheets is a promising synthetic strategy but highlights how the interfacial properties of the obtained materials could be affected by ancillary components in the preparation method.

Type
Article
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Chhowalla, M., Shin, H.S., Eda, G., Li, L-J., Loh, K.P., and Zhang, H.: The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263 (2013).CrossRefGoogle ScholarPubMed
Lin, Z., McCreary, A., Briggs, N., Subramanian, S., Zhang, K., Sun, Y., Li, X., Borys, N.J., Yuan, H., Fullerton-Shirey, S.K., Chernikov, A., Zhao, H., McDonnell, S., Lindenberg, A.M., Xiao, K., LeRoy, B.J., Drndić, M., Hwang, J.C.M., Park, J., Chhowalla, M., Schaak, R.E., Javey, A., Hersam, M.C., Robinson, J., and Terrones, M.: 2D materials advances: From large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications. 2D Mater. 3, 042001 (2016).CrossRefGoogle Scholar
Zhang, X., Hou, L., Ciesielski, A., and Samorì, P.: 2D materials beyond graphene for high-performance energy storage applications. Adv. Energy Mater. 6, 1600671 (2016).CrossRefGoogle Scholar
Deng, D., Novoselov, K.S., Fu, Q., Zheng, N., Tian, Z., and Bao, X.: Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 11, 218 (2016).CrossRefGoogle ScholarPubMed
Hashimoto, K., Irie, H., and Fujishima, A.: TiO2 photocatalysis: A historical overview and future prospects. Jpn. J. Appl. Phys. 44, 8269 (2005).CrossRefGoogle Scholar
Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J.L., Horiuchi, Y., Anpo, M., and Bahnemann, D.W.: Understanding TiO2 photocatalysis: Mechanisms and materials. Chem. Rev. 114, 9919 (2014).CrossRefGoogle ScholarPubMed
Pan, X.Y., Chen, X.X., and Yi, Z.G.: Defective, porous TiO2 nanosheets with Pt decoration as an efficient photocatalyst for ethylene oxidation synthesized by a C3N4 templating method. ACS Appl. Mater. Interfaces 8, 10104 (2016).CrossRefGoogle ScholarPubMed
Zhang, J., Zhu, Z.P., Tang, Y.P., Müllen, K., and Feng, X.L.: Titania nanosheet-mediated construction of a two-dimensional titania/cadmium sulfide heterostructure for high hydrogen evolution activity. Adv. Mater. 26, 734 (2014).CrossRefGoogle ScholarPubMed
Yang, H.G., Sun, C.H., Qiao, S.Z., Zou, J., Liu, G., Smith, S.C., Cheng, H.M., and Lu, G.Q.: Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453, 638 (2008).CrossRefGoogle ScholarPubMed
Han, X.G., Kuang, Q., Jin, M.S., Xie, Z.X., and Zheng, L.S.: Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 131, 3152 (2009).CrossRefGoogle ScholarPubMed
Wen, P.H., Itoh, H., Tang, W.P., and Feng, Q.: Single nanocrystals of anatase-type TiO2 prepared from layered titanate nanosheets: Formation mechanism and characterization of surface properties. Langmuir 23, 11782 (2007).CrossRefGoogle ScholarPubMed
Wen, P.H., Ishikawa, Y., Itoh, H., and Feng, Q.: Topotactic transformation reaction from layered titanate nanosheets into anatase nanocrystals. J. Phys. Chem. C 113, 20275 (2009).CrossRefGoogle Scholar
Chen, C.D., Xu, L.F., Sewvandi, G.A., Kusunose, T., Tanaka, Y., Nakanishi, S., and Feng, Q.: Microwave-assisted topochemical conversion of layered titanate nanosheets to {010}-faceted anatase nanocrystals for high performance photocatalysts and dye-sensitized solar cells. Cryst. Growth Des. 14, 5801 (2014).CrossRefGoogle Scholar
Yuan, H.Y., Besselink, R., Liao, Z.L., and ten Elshof, J.E.: The swelling transition of lepidocrocite-type protonated layered titanates into anatase under hydrothermal treatment. Sci. Rep. 4, 4584 (2014).CrossRefGoogle ScholarPubMed
Wang, L.Z. and Sasaki, T.: Titanium oxide nanosheets: Graphene analogues with versatile functionalities. Chem. Rev. 114, 9455 (2014).CrossRefGoogle ScholarPubMed
Cheng, Q., Yang, T., Li, M., and Chan, C.K.: Oxidation–reduction assisted exfoliation of LiCoO2 into nanosheets and reassembly into functional Li-ion battery cathodes. J. Mater. Chem. A 4, 6902 (2016).CrossRefGoogle Scholar
Cheng, Q., Yang, T., Li, M., and Chan, C.K.: Exfoliation of LiNi1/3Mn1/3Co1/3O2 into nanosheets using electrochemical oxidation and reassembly with dialysis or flocculation. Langmuir 33, 9271 (2017).CrossRefGoogle ScholarPubMed
Zeng, Z.Y., Yin, Z.Y., Huang, X., Li, H., He, Q.Y., Lu, G., Boey, F., and Zhang, H.: Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. Angew. Chem., Int. Ed. 50, 11093 (2011).CrossRefGoogle ScholarPubMed
Zeng, Z.Y., Sun, T., Zhu, J.X., Huang, X., Yin, Z.Y., Lu, G., Fan, Z.X., Yan, Q.Y., Hng, H.H., and Zhang, H.: An effective method for the fabrication of few-layer-thick inorganic nanosheets. Angew. Chem., Int. Ed. 51, 9052 (2012).CrossRefGoogle ScholarPubMed
Ohno, T., Akiyoshi, M., Umebayashi, T., Asai, K., Mitsui, T., and Matsumura, M.: Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl. Catal., A 265, 115 (2004).CrossRefGoogle Scholar
Ho, W.K., Yu, J.C., and Lee, S.C.: Low-temperature hydrothermal synthesis of S-doped TiO2 with visible light photocatalytic activity. J. Solid State Chem. 179, 1171 (2006).CrossRefGoogle Scholar
Xiang, Q.J., Yu, J.G., and Jaroniec, M.: Nitrogen and sulfur Co-doped TiO2 nanosheets with exposed {001} facets: Synthesis, characterization and visible-light photocatalytic activity. Phys. Chem. Chem. Phys. 13, 4853 (2011).CrossRefGoogle ScholarPubMed
Li, Z.H., Zhu, Y.L., Pang, F.X., Liu, H.Y., Gao, X.G., Ou, W., Liu, J.W., Wang, X., Cheng, X.D., and Zhang, Y.F.: Synthesis of N doped and N, S co-doped 3D TiO2 hollow spheres with enhanced photocatalytic efficiency under nature sunlight. Ceram. Int. 41, 10063 (2015).CrossRefGoogle Scholar
Lin, Y-C., Chien, T-E., Lai, P-C., Chaing, Y-H., Li, K-L., and Lin, J-L.: TiS2 transformation into S-doped and N-doped TiO2 with visible-light catalytic activity. Appl. Surf. Sci. 359, 1 (2015).CrossRefGoogle Scholar
Umebayashi, T., Yamaki, T., Itoh, H., and Asai, K.: Band gap narrowing of titanium dioxide by sulfur doping. Appl. Phys. Lett. 81, 454 (2002).CrossRefGoogle Scholar
Lim, Y.W.L., Tang, Y.X., Cheng, Y.H., and Chen, Z.: Morphology, crystal structure and adsorption performance of hydrothermally synthesized titania and titanate nanostructures. Nanoscale 2, 2751 (2010).CrossRefGoogle ScholarPubMed
Zeng, Z.Y., Tan, C.L., Huang, X., Bao, S.Y., and Zhang, H.: Growth of noble metal nanoparticles on single-layer TiS2 and TaS2 nanosheets for hydrogen evolution reaction. Energy Environ. Sci. 7, 797 (2014).CrossRefGoogle Scholar
Whittingham, M.S.: Electrical energy storage and intercalation chemistry. Science 192, 1126 (1976).CrossRefGoogle ScholarPubMed
Long, E., O’Brien, S., Lewis, E.A., Prestat, E., Downing, C., Cucinotta, C.S., Sanvito, S., Haigh, S.J., and Nicolosi, V.: An in situ and ex situ TEM study into the oxidation of titanium(IV) sulphide. npj 2D Mater. Appl. 1, 22 (2017).CrossRefGoogle Scholar
Zhang, W.F., He, Y.L., Zhang, M.S., Yin, Z., and Chen, Q.: Raman scattering study on anatase TiO2 nanocrystals. J. Phys. D: Appl. Phys. 33, 912 (2000).CrossRefGoogle Scholar
Let, A.L., Mainwaring, D.E., Rix, C., and Murugaraj, P.: Thio sol–gel synthesis of titanium disulfide thin films and powders using titanium alkoxide precursors. J. Non-Cryst. Solids 354, 1801 (2008).CrossRefGoogle Scholar
Chianelli, R.R., Scanlon, J.C., and Thompson, A.H.: Structure refinement of stoichiometric TiS2. Mater. Res. Bull. 10, 1379 (1975).CrossRefGoogle Scholar
Howard, C.J., Sabine, T.M., and Dickson, F.: Structure and thermal parameters for rutile and anatase. Acta Crystallogr., Sect. B: Struct. Sci. 47, 462 (1991).CrossRefGoogle Scholar
Faba, M.G., Gonbeau, D., and Pfister-Guillouzo, G.: Core and valence spectra of titanium dichalcogenides TiX2 (where X is O, S). Experimental and theoretical studies. J. Electron Spectrosc. Relat. Phenom. 73, 65 (1995).CrossRefGoogle Scholar
Martinez, H., Auriel, C., Gonbeau, D., Loudet, M., and Pfister-Guillouzo, G.: Studies of 1T TiS2 by STM, AFM, and XPS: The mechanism of hydrolysis in air. Appl. Surf. Sci. 93, 231 (1996).CrossRefGoogle Scholar
Oh, D.Y., Choi, Y.E., Kim, D.H., Lee, Y-G., Kim, B-S., Park, J., Sohn, H., and Jung, Y.S.: All-solid-state lithium-ion batteries with TiS2 nanosheets and sulphide solid electrolytes. J. Mater. Chem. A 4, 10329 (2016).CrossRefGoogle Scholar
Iwabuchi, A., Choo, K.C., and Tanaka, K.: Titania nanoparticles prepared with pulsed laser ablation of rutile single crystals in water. J. Phys. Chem. B 108, 10863 (2004).CrossRefGoogle Scholar
Bayati, M.R., Moshfegh, A.Z., and Golestani-Fard, F.: On the photocatalytic activity of the sulfur doped titania nano-porous films derived via micro-arc oxidation. Appl. Catal., A 389, 60 (2010).CrossRefGoogle Scholar
Lin, Y-H., Chou, S-H., and Chu, H.: A kinetic study for the degradation of 1,2-dichloroethane by S-doped TiO2 under visible light. J. Nanopart. Res 16, 2539 (2014).CrossRefGoogle Scholar
Colón, G., Hidalgo, M.C., Munuera, G., Ferino, I., Cutrufello, M.G., and Navío, J.A.: Structural and surface approach to the enhanced photocatalytic activity of sulfated TiO2 photocatalyst. Appl. Catal., B 63, 45 (2006).CrossRefGoogle Scholar
Tang, X.H. and Li, D.Y.: Sulfur-doped highly ordered TiO2 nanotubular arrays with visible light response. J. Phys. Chem. C 112, 5405 (2008).CrossRefGoogle Scholar
Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C., and Herrmann, J.M.: Photocatalytic degradation pathway of methylene blue in water. Appl. Catal., B 31, 145 (2001).CrossRefGoogle Scholar
Li, X.Z. and Li, F.B.: Study of Au/Au3+–TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment. Environ. Sci. Technol. 35, 2381 (2011).CrossRefGoogle Scholar
Xie, G.C., Zhang, K., Guo, B.D., Liu, Q., Fang, L., and Gong, J.R.: Graphene-based materials for hydrogen generation from light-driven water splitting. Adv. Mater. 25, 3820 (2013).CrossRefGoogle ScholarPubMed
Velo-Gala, I., López-Peñalver, J.J., Sánchez-Polo, M., and Rivera-Utrilla, J.: Activated carbon as photocatalyst of reactions in aqueous phase. Appl. Catal., B 142, 694 (2013).CrossRefGoogle Scholar
Zhang, J.M., Vasei, M., Sang, Y.H., Liu, H., and Claverie, J.P.: TiO2@carbon photocatalysts: The effect of carbon thickness on catalysis. ACS Appl. Mater. Interfaces 8, 1903 (2016).CrossRefGoogle ScholarPubMed
Lin, C.W., Zhu, X.J., Feng, J., Wu, C.Z., Hu, S.L., Peng, J., Guo, Y.Q., Peng, L.L., Zhao, J.Y., Huang, J.L., Yang, J.L., and Xie, Y.: Hydrogen-incorporated TiS2 ultrathin nanosheets with ultrahigh conductivity for stamp-transferrable electrodes. J. Am. Chem. Soc. 135, 5144 (2013).CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Jing et al. supplementary material

Table SI and Figures S1-S9

Download Jing et al. supplementary material(PDF)
PDF 628.3 KB