Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T13:44:21.905Z Has data issue: false hasContentIssue false

Synthesis of positively charged polyelectrolyte multilayer membranes for removal of divalent metal ions

Published online by Cambridge University Press:  29 May 2013

Zhenping Qin
Affiliation:
College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
Changle Geng
Affiliation:
College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
Hongxia Guo*
Affiliation:
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
Ziang Du*
Affiliation:
College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
Guojun Zhang
Affiliation:
College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
Shulan Ji
Affiliation:
College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
*
a)Address all correspondence to this author. e-mail: hxguo@bjut.edu.cn
Get access

Abstract

Alternating layer-by-layer (LbL) deposition of polycations and polyanions on porous substrates is a convenient and versatile method for forming high-flux nanofiltration (NF) membranes. In this work, positively charged NF membranes were fabricated by the LbL assembly of poly(ethyleneimine) (PEI) and poly(sodium 4-styrenesulfonate) (PSS) on the modified polyacrylonitrile ultra-filtration substrate. The charge variation with each layer was characterized by zeta potential. ATR-FTIR, SEM, N2 adsorption and the weight changes with bi-layers were used to confirm the LbL deposition of the polyelectrolytes. NF performances of the prepared membrane with a number of bi-layers as well as solute concentrations were also investigated. The results of zeta potential showed that the whole multilayer films exhibited periodic variations in positive charge. NF results indicated that the rejection of Ni2+ and Cd2+ ions increased, while the permeate fluxes decreased with the number of bi-layers. And the rejections of the metal ion solutes were 98.02% for CuSO4, 95.53% for ZnSO4, 95.66% for NiCl2, 94.9% for CdCl2, along with permeation fluxes of 19.02, 19.72, 24.02, and 21.19 L/m2·h, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Yuan, T., Ping, Y., Rongjun, Q., Chunhua, W., Hegen, Z., and Zhongxi, Y.: Removal of transition metal ions from aqueous solutions by adsorption using a novel hybrid material silica gel chemically modified by triethylenetetraminomethylenephosphonic acid. Chem. Eng. J. 162, 573579 (2010).Google Scholar
Navarro, R.R., Wada, S., and Tatsumi, K.: Heavy metal precipitation by polycation–polyanion complex of PEI and its phosphonomethylated derivative. J. Hazard. Mater. 123, 203209 (2005).CrossRefGoogle ScholarPubMed
Lee, I.H., Kuan, Y., and Chern, J.: Factorial experimental design for recovering heavy metals from sludge with ion-exchange resin. J. Hazard. Mater. 138, 549559 (2006).CrossRefGoogle ScholarPubMed
Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L., and Zhang, Q.: Heavy metal removal from water/wastewater by nanosized metal oxides: A review. J. Hazard. Mater. 211212, 317331 (2012).CrossRefGoogle ScholarPubMed
Kongsricharoern, N. and Polprasert, C.: Electrochemical precipitation of chromium (Cr6+) from an electroplating wastewater. Water Sci. Technol. 31, 109117 (1995).CrossRefGoogle Scholar
Song, J., Oh, H., Kong, H., and Jang, J.: Polyrhodanine modified anodic aluminum oxide membrane for heavy metal ions removal. J. Hazard. Mater. 187, 311317.CrossRefGoogle Scholar
Fane, A.G., Yeo, A., Law, A., Parameshwaran, K., Wicaksana, F., and Chen, V.: Low pressure membrane processes-doing more with less energy. Desalination 185, 159165 (2005).CrossRefGoogle Scholar
Murthy, Z.V.P. and Chaudhari, L.B.: Rejection behavior of nickel ions from synthetic wastewater containing Na2SO4, NiSO4, MgCl2 and CaCl2 salts by nanofiltration and characterization of the membrane. Desalination 247, 610622 (2009).CrossRefGoogle Scholar
Murthy, Z.V.P. and Chaudhari, L.B.: Application of nanofiltration for the rejection of nickel ions from aqueous solutions and estimation of membrane transport parameters. J. Hazard. Mater. 160, 7077 (2008).CrossRefGoogle ScholarPubMed
Bouranene, S., Fievet, P., Szymczyk, A., Samarc, M.E., and Vidonne, A.: Influence of operating conditions on the rejection of cobalt and lead ions in aqueous solutions by a nanofiltration polyamide membrane. J. Membr. Sci. 325, 150157 (2008).CrossRefGoogle Scholar
Ku, Y., Chen, S.W., and Wang, W.Y.: Effect of solution composition on the removal of copper ions by nanofiltration. Sep. Purif. Technol. 43, 135142 (2005).CrossRefGoogle Scholar
Tanninen, J., Manttari, M., and Nystrom, M.: Nanofiltration of concentrated acidic copper sulphate solutions. Desalination 189, 9296 (2006).CrossRefGoogle Scholar
Saitua, H., Campderros, M., Cerutti, S., and Padilla, A.P.: Effect of operating conditions in removal of arsenic from water by nanofiltration membrane. Desalination 172, 173180 (2005).CrossRefGoogle Scholar
Al-Rashdi, B.A.M., Johnson, D.J., and Hilal, N.: Removal of heavy metal ions by nanofiltration. Desalination 315, 217 (2012).CrossRefGoogle Scholar
Wahab, M.A., Hilal, N., and Nizam, A.S.M.: A study on producing composite nanofiltration membranes with optimized properties. Desalination 158, 7378 (2003).CrossRefGoogle Scholar
Zhang, W., He, G., Gao, P., and Chen, G.: Development and characterization of composite nanofiltration membranes and their application in concentration of antibiotics. Sep. Purif. Technol. 30, 2735 (2003).CrossRefGoogle Scholar
Veríssimo, S., Peinemann, K.V., and Bordado, J.: Influence of the diamine structure on the nanofiltration performance, surface morphology and surface charge of the composite polyamide membranes. J. Membr. Sci. 279, 266275 (2006).CrossRefGoogle Scholar
Zhong, P.S., Widjojo, N., Chung, T., Weber, M., and Maletzko, C.: Positively charged nanofiltration (NF) membranes via UV grafting on sulfonated polyphenylenesulfone (sPPSU) for effective removal of textile dyes from wastewater. J. Membr. Sci. 417418, 5260 (2012).CrossRefGoogle Scholar
Freger, V., Gilron, J., and Belfer, S.: TFC polyamide membranes modified by grafting of hydrophilic polymers: An FT-IR/AFM/TEM study. J. Membr. Sci. 209, 283292 (2002).CrossRefGoogle Scholar
Athanasekou, C.P., Romanos, G.E., Kordatos, K., Kasselouri-Rigopoulou, V., Kakizis, N.K., and Sapalidis, A.A.: Grafting of alginates on UF/NF ceramic membranes for wastewater treatment. J. Hazard. Mater. 182, 611623 (2010).CrossRefGoogle ScholarPubMed
Kim, I.C., Yoon, H.G., and Lee, K.H.: Formation of integrally skinned asymmetric polyetherimide nanofiltration membranes by phase inversion process. J. Appl. Polym. Sci. 84, 13001307 (2002).CrossRefGoogle Scholar
Mi, B., Coronell, O., Mariñas, B.J., Watanabe, F., Cahill, D.G., and Petrov, I.: Physico-chemical characterization of NF/RO membrane active layers by Rutherford backscattering spectrometry. J. Membr. Sci. 282, 7181 (2006).CrossRefGoogle Scholar
Gohil, J.M. and Ray, P.: Polyvinyl alcohol as the barrier layer in thin film composite nanofiltration membranes: Preparation, characterization, and performance evaluation. J. Colloid Interface Sci. 338, 121127 (2009).CrossRefGoogle ScholarPubMed
Wang, D.X., Su, M., Yu, Z.Y., Wang, X.L., Ando, M., and Shintani, T.: Separation performance of a nanofiltration membrane influenced by species and concentration of ions. Desalination 175, 219 (2005).CrossRefGoogle Scholar
Wang, X.L., Tsuru, T., Nakao, S., and Kimura, S.: The electrostatic and sterichindrance model for the transport of charged solutes through nanofiltration membranes. J. Membr. Sci. 135, 19 (1997).CrossRefGoogle Scholar
Du, R. and Zhao, J.: Properties of poly(N, N-dimethylaminoethyl methacrylate)/polysulfone positively charged composite nanofiltration membrane. J. Membr. Sci. 239, 183 (2004).CrossRefGoogle Scholar
Ji, Y., An, Q., Zhao, Q., Chen, H., and Gao, C.: Preparation of novel positively charged copolymer membranes for nanofiltration. J. Membr. Sci. 376, 254265 (2011).CrossRefGoogle Scholar
Ba, C.Y., Langer, J., and Economy, J.: Chemical modification of P84 copolyimide membranes by polyethylenimine for nanofiltration. J. Membr. Sci. 327, 4958 (2009).CrossRefGoogle Scholar
Deng, H., Xu, Y., Chen, Q., Wei, X., and Zhu, B.: High flux positively charged nanofiltration membranes prepared by UV-initiated graft polymerization of methacrylatoethyl trimethyl ammonium chloride (DMC) onto polysulfone membranes. J. Membr. Sci. 366, 363372 (2009).CrossRefGoogle Scholar
Bruening, M.L., Dotzauer, D.M., Jain, P., Ouyang, L., and Baker, G.L.: Creation of functional membranes using polyelectrolyte multilayers and polymer brushes. Langmuir 24, 76637673 (2008).CrossRefGoogle ScholarPubMed
Sullivan, D.M. and Bruening, M.L.: Ultrathin, gas-selective polyimide membranes prepared from multilayer polyelectrolyte films. Chem. Mater. 15, 281287 (2003).CrossRefGoogle Scholar
Wang, N., Zhang, G., Ji, S., Qin, Z., and Liu, Z.: The salt-, pH- and oxidant-responsive pervaporation behaviors of weak polyelectrolyte multilayer membranes. J. Membr. Sci. 354, 1422 (2010).CrossRefGoogle Scholar
Ouyang, L., Malaisamy, R., and Bruening, M.L.: Multilayer polyelectrolyte films as nanofiltration membranes for separating monovalent and divalent cations. J. Membr. Sci. 310, 7684 (2008).CrossRefGoogle Scholar
Malaisamy, R. and Bruening, M.L.: High-flux nanofiltration membranes prepared by adsorption of multilayer polyelectrolyte membranes on polymeric supports. Langmuir 21, 1058710592 (2005).CrossRefGoogle ScholarPubMed
Deng, H., Xu, Y., Zhu, B., Wei, X., Liu, F., and Cui, Z.: Polyelectrolyte membranes prepared by dynamic self-assembly of poly (4-styrenesulfonic acid-co-maleic acid) sodium salt (PSSMA) for nanofiltration (I). J. Membr. Sci. 323, 125133 (2008).CrossRefGoogle Scholar
Hong, S.U., Malaisamy, R., and Bruening, M.L.: Optimization of flux and selectivity in Cl/SO42− separations with multilayer polyelectrolyte membranes. J. Membr. Sci. 283, 366372 (2006).CrossRefGoogle Scholar
Ahmadiannamini, P., Li, X., Goyens, W., Meesschaert, B., and Vankelecom, I.F.J.: Multilayered PEC nanofiltration membranes based on SPEEK/PDDA for anion separation. J. Membr. Sci. 360, 250258 (2010).CrossRefGoogle Scholar
Jin, W., Toutianoush, A., and Tieke, B.: Use of polyelectrolyte layer-by-layer assemblies as nanofiltration and reverse osmosis membranes. Langmuir 19, 2550 (2003).CrossRefGoogle Scholar
Stanton, B.W., Harris, J.J., Miller, M.D., and Bruening, M.L.: Ultrathin, multilayered polyelectrolyte films as nanofiltration membranes. Langmuir 19, 70387042 (2003).CrossRefGoogle Scholar
Malaisamy, R., Talla-Nwafo, A., and Jones, K.L.: Polyelectrolyte modification of nanofiltration membrane for selective removal of monovalent anions. Sep. Purif. Technol. 77, 367374 (2011).CrossRefGoogle Scholar
Michna, A., Adamczyk, Z., and Zembala, M.: Deposition of colloid particles on polyelectrolyte multilayers. Colloids Surf., A 302, 467 (2007).CrossRefGoogle Scholar
Egueh, A.N.D., Lakard, B., Fievet, P., Lakard, S., and Buron, C.: Charge properties of membranes modified by multilayer polyelectrolyte adsorption. J. Colloid Interface Sci. 344, 221227 (2010).CrossRefGoogle ScholarPubMed
Trybała, A., Szyk-Warszyńska, L., and Warszyński, P.: The effect of anchoring PEI layer on the build-up of polyelectrolyte multilayer films at homogeneous and heterogeneous surfaces. Colloids Surf., A 343, 127132 (2009).CrossRefGoogle Scholar
Deng, S. and Ting, Y-P.: Characterization of PEI-modified biomass and biosorption of Cu(Ⅱ), Pb(Ⅱ) and Ni(Ⅱ). Water Res. 39, 21672177 (2005).CrossRefGoogle Scholar
Nyström, M., Kaipia, L., and Luque, S.: Fouling and retention of nanofiltration membranes. J. Membr. Sci. 98, 249262 (1995).CrossRefGoogle Scholar
Baticle, P., Kiefer, C., Lakhchaf, N., Larbot, A., Leclerc, O., Persin, M., and Sarrazin, J.: Salt filtration on gamma alumina nanofiltration membranes fired at two different temperatures. J. Membr. Sci. 283, 18 (1997).CrossRefGoogle Scholar
Liu, J., Xu, Z., and Zhou, K.: Study on new method of the preparation of pure ammonium metatungstate (AMT) using a coupling process of neutralization–nanofiltration–crystallization. J. Membr. Sci. 240, 19 (2004).CrossRefGoogle Scholar
Ji, Y., An, Q., Zhao, Q., Chen, H., Qian, J., and Gao, C.: Fabrication and performance of a new type of charged nanofiltration membrane based on polyelectrolyte complex. J. Membr. Sci. 357, 8089 (2010).CrossRefGoogle Scholar
Peeters, J.M.M., Boom, J.P., Mulder, M.H.V., and Strathmann, H.: Retention measurements of nanofiltration membranes with electrolyte solutions. J. Membr. Sci. 145, 199209 (1998).CrossRefGoogle Scholar
Huang, R., Chen, G., Yang, B., and Gao, C.: Positively charged composite nanofiltration membrane from quaternized chitosan by toluene diisocyanate cross-linking. Sep. Purif. Technol. 61, 424429 (2008).CrossRefGoogle Scholar
Mehiguene, K., Garba, Y., Taha, S., Gondrexon, N., and Dorange, G.: Influence of operating conditions on the retention of copper and cadmium in aqueous solutions by nanofiltration: Experimental results and modelling. Sep. Purif. Technol. 15, 181187 (1999).CrossRefGoogle Scholar
Murthy, Z.V.P. and Chaudhari, L.B.: Separation of binary heavy metals from aqueous solutions by nanofiltration and characterization of the membrane using Spiegler–Kedem model. Chem. Eng. J. 150, 181187 (2009).CrossRefGoogle Scholar
Garba, Y., Taha, S., Cabon, J.. Modeling of cadmium salts rejection through a nanofiltration membrane: Relationships between solute concentration and transport parameters. J. Membr. Sci. 211, 5158 (2003).CrossRefGoogle Scholar
Paugam, L., Taha, S., Dorange, G., Jaouen, P., and Quéméneura, F.: Mechanism of nitrate ions transfer in nanofiltration depending on pressure, pH, concentration and medium composition. J. Membr. Sci. 231, 3746 (2004).CrossRefGoogle Scholar