Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-26T12:56:42.288Z Has data issue: false hasContentIssue false

Synthesis of porous Li2MnO3-LiNi1/3Co1/3Mn1/3O2 nanoplates via colloidal crystal template

Published online by Cambridge University Press:  22 May 2013

Yong Jiang
Affiliation:
School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
Hua Zhuang
Affiliation:
School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
Qiliang Ma*
Affiliation:
School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
Zheng Jiao
Affiliation:
School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
Haijiao Zhang
Affiliation:
School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
Ruizhe Liu
Affiliation:
School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
Yuliang Chu
Affiliation:
Instrumental Analysis and Research Center, Shanghai University, Shanghai 200444, China
Bing Zhao*
Affiliation:
School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
*
a)Address all correspondence to this author. e-mail: bzhao@shu.edu.cn
Get access

Abstract

The porous Li1.2Ni0.13Co0.13Mn0.54O2 nanoplate is prepared by colloidal crystal template assembled by the poly (methyl methacrylate) (PMMA) beads. Scanning electron microscopy and transmission electron microscopy results show that the nanoplates of porous solid solution cathodes are composed of nanoparticles with a size range of 30 nm, which interweave together forming an open porous structure. Electrochemical tests show that porous Li1.2Ni0.13Co0.13Mn0.54O2 cathode could deliver higher discharge capacity than that of bulk Li1.2Ni0.13Co0.13Mn0.54O2 cathode at all C-rates. The enhanced structural stability reflected by high ratios of integrated Intensity I(003)/I(104) and lattice parameters c/a, high specific surface area, a fast reaction and ionic diffusion kinetics of the nanoplates are considered attributable to the improved electrochemical properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Johnson, C.S., Kim, J-S., Lefief, C., Li, N., Vaughey, J.T., and Thackeray, M.M.: The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3·(1-x)LiMn0.5Ni0.5O2 electrodes. Electrochem. Commun. 6, 1085 (2004).CrossRefGoogle Scholar
Liu, J., Wang, Q.Y., Jayan, B.R., and Manthiram, A.: Carbon-coated high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes. Electrochem. Commun. 12, 750 (2010).CrossRefGoogle Scholar
Kang, S-H., Kempgens, P., Greenbaum, S., Kropf, A.J., Amine, K., and Thackeray, M.M.: Interpreting the structural and electrochemical complexity of 0.5Li2MnO3·0.5LiMO2 electrodes for lithium batteries (M = Mn0.5−xNi0.5−xCo2x, 0 ≤ x ≤ 0.5). J. Mater. Chem. 17, 2069 (2007).CrossRefGoogle Scholar
Lu, Z. and Dahn, J.R.: Understanding the anomalous capacity of Li/Li [NixLi (1/3− 2x/3) Mn (2/3− x/3)]O2 cells using in situ x-ray diffraction and electrochemical studies. J. Electrochem. Soc. 149, A815 (2002).CrossRefGoogle Scholar
Liu, J., Jayan, B.R., and Manthiram, A.: Conductive surface modification with aluminum of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes. J. Phys. Chem. C 114, 9528 (2010).CrossRefGoogle Scholar
Yabuuchi, N., Yoshii, K., Myung, S.T., Nakai, I., and Komaba, S.: Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo1/3Ni1/3Mn1/3O2. J. Am. Chem. Soc. 133, 4404 (2011).CrossRefGoogle Scholar
Yang, P.D., Zhao, D.Y., Margolese, D.I., Chmelka, B.F., and Stucky, G.D.: Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 396, 152 (1998).CrossRefGoogle Scholar
Yang, P.D., Zhao, D.Y., Margolese, D.I., Chmelka, B.F., and Stucky, G.D.: Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework. Chem. Mater. 11, 2813 (1999).CrossRefGoogle Scholar
Su, F.B., Zeng, J.H., Bai, P., Lv, L., Guo, P., Sun, H., Li, H., Yu, J., Lee, J., and Zhao, X.: Template synthesis of mesoporous carbon microfibers as a catalyst support for methanol electrooxidation. Ind. Eng. Chem. Res. 46, 9097 (2007).CrossRefGoogle Scholar
Long, J.W., Sassin, M.B., Fischer, A.E., and Rolison, D.R.: Multifunctional MnO2−carbon nanoarchitectures exhibit battery and capacitor characteristics in alkaline electrolytes. J. Phys. Chem. C 113, 17595 (2009).CrossRefGoogle Scholar
Wang, Z.Y., Kiesel, E.R., and Stein, A.: Silica-free syntheses of hierarchically ordered macroporous polymer and carbon monoliths with controllable mesoporosity. J. Mater. Chem. 18, 2194 (2008).CrossRefGoogle Scholar
Wang, Z.Y., Fierke, M.A., and Stein, A.: Porous carbon/Tin (IV) oxide monoliths as anodes for lithium-ion batteries. J. Electrochem. Soc. 155, A658 (2008).CrossRefGoogle Scholar
Lu, A.H., Schmidt, W., Spliethoff, B., and Schüth, F.: Synthesis of ordered mesoporous carbon with bimodal pore system and high pore volume. Adv. Mater. 15, 1602 (2003).CrossRefGoogle Scholar
Yan, H., Blanford, C.F., Lytle, J.C., Carter, B., Smyrl, W.H., and Stein, A.: Influence of processing conditions on structures of 3D ordered macroporous metals prepared by colloidal crystal templating. Chem. Mater. 13, 4314 (2001).CrossRefGoogle Scholar
Doherty, C.M., Caruso, R.A., Smarsly, B.M., and Drummond, C.J.: Colloidal crystal templating to produce hierarchically porous LiFePO4 electrode materials for high power lithium ion batteries. Chem. Mater. 21, 2895 (2009).CrossRefGoogle Scholar
Doherty, C.M., Caruso, R.A., and Drummond, C.J.: High performance LiFePO4 electrode materials: Influence of colloidal particle morphology and porosity on lithium-ion battery power capability. Energy Environ. Sci. 3, 813 (2010).CrossRefGoogle Scholar
Wang, G.X., Liu, H., Liu, J., Qiao, S., Lu, G., Munroe, P., and Ahn, H.: Mesoporous LiFePO4/C nanocomposite cathode materials for high power lithium ion batteries with superior performance. Adv. Mater. 22, 4944 (2010).CrossRefGoogle ScholarPubMed
Vu, A. and Stein, A.: Multiconstituent synthesis of LiFePO4/C composites with hierarchical porosity as cathode materials for lithium ion batteries. Chem. Mater. 23, 3237 (2011).CrossRefGoogle Scholar
Yuvaraj, S., Fan-Yuan, L., Tsong-Huei, C., and Chuin-Tih, Y.: Thermal decomposition of metal nitrates in air and hydrogen environments. J. Phys. Chem. B 107, 1044 (2003).CrossRefGoogle Scholar
Holland, B.T., Blanford, C.F., Do, T., and Stein, A.: Synthesis of highly ordered, three-dimensional, macroporous structures of amorphous or crystalline inorganic oxides, phosphates, and hybrid composites. Chem. Mater. 11, 795 (1999).CrossRefGoogle Scholar
Wang, T.W., Sel, O., Djerdj, I., and Smarsly, B.: Preparation of a large mesoporous CeO2 with crystalline walls using PMMA colloidal crystal templates. Colloid Polym. Sci. 285, 1 (2006).CrossRefGoogle Scholar
Liu, W., Farrington, G.C., Chaput, F., and Dunn, B.: Synthesis and electrochemical studies of spinel phase LiMn2O4 cathode materials prepared by the pechini process. J. Electrochem. Soc. 143, 879 (1996).CrossRefGoogle Scholar
Tonti, D., Torralvo, M.J., Enciso, E., Sobrados, I., and Sanz, J.: Three-dimensionally ordered macroporous lithium manganese oxide for rechargeable lithium batteries. Chem. Mater. 20, 4783 (2008).CrossRefGoogle Scholar
Yan, H.W., Blanford, C.F., Holland, B.T., Smyrl, W.H., and Stein, A.: General synthesis of periodic macroporous solids by templated salt precipitation and chemical conversion. Chem. Mater. 12, 1134 (2000).CrossRefGoogle Scholar
Zheng, J.M., Wu, X.B., and Yang, Y.: A comparison of preparation method on the electrochemical performance of cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 for lithium ion battery. Electrochim. Acta 56, 3071 (2011).CrossRefGoogle Scholar
Lu, Z.H., Beaulieu, L.Y., Donaberger, R.A., Thomas, C.L., and Dahn, J.R.: Synthesis, structure, and electrochemical behavior of Li[NixLi1/3-2x/3Mn2/3-x/3]O2. J. Electrochem. Soc. 149, A778 (2002).CrossRefGoogle Scholar
Johnson, C.S., Li, N., Vaughey, J.T., Hackney, S.A., and Thackeray, M.M.: Lithium-manganese oxide electrodes with layered-spinel composite structures xLi2MnO3·(1-x)Li1+yMn2-yO4 (0 < x <1, 0 ≤ y ≤ 0.33) for lithium batteries. Electrochem. Commun. 7, 528 (2005).CrossRefGoogle Scholar
Pasero, D., McLaren, V., Souza, S.D., and West, A.R.: Oxygen nonstoichiometry in Li2MnO3: An alternative explanation for its anomalous electrochemical activity. Chem. Mater. 17, 345 (2005).CrossRefGoogle Scholar
Chen, Z.H. and Dahn, J.R.: Effect of ZrO2 coating on the structure and electrochemistry of LixCoO2 when cycled to 4.5V. Electrochem. Solid-State Lett. 5, A213 (2002).CrossRefGoogle Scholar
Liu, X.M., Gao, W., and Ji, B.: Synthesis of LiNi1/3Co1/3Mn1/3O2 nanoparticles by modified Pechini method and their enhanced rate capability. J Sol-Gel Sci. Technol. 61, 56 (2012).CrossRefGoogle Scholar
Kim, J.H., Park, C.W., and Sun, Y.K.: Synthesis and electrochemical behavior of Li[Li0.1Ni0.35-x/2CoxMn0.55-x/2]O2 cathode material. Solid State Ionics 164, 43 (2003).CrossRefGoogle Scholar
Subramanian, V., Karki, K., and Rambabu, B.: Synthesis and electrochemical properties of submicron LiNi0.5Co0.5O2. Solid State Ionics 175, 315 (2004).CrossRefGoogle Scholar
Zhao, C.H., Kang, W.P., Xue, Q.B., and Shen, Q.: Polymerization-pyrolysis-assisted nanofabrication of solid solution Li1.2Ni0.13Co0.13Mn0.54O2 for lithium-ion battery cathodes. J. Nanopart. Res. 14, 1240 (2012).CrossRefGoogle Scholar
Yu, C., Li, G.S., Guan, X.F., Zheng, J., Li, L.P., and Chen, T.W.: Composites Li2MnO3·LiMn1/3Ni1/3Co1/3O2: Optimized synthesis and applications as advanced high-voltage cathode for batteries working at elevated temperatures. Electrochim. Acta 81, 283 (2012).CrossRefGoogle Scholar
Hong, Y.J., Choi, S.H., Sim, C.M., Lee, J.K., and Kang, Y.C.: Effect of boric acid on the properties of Li2MnO3·LiNi0.5Mn0.5O2 composite cathode powders prepared by large-scale spray pyrolysis with droplet classifier. MRS Bull. 47, 4359 (2012).CrossRefGoogle Scholar
Sun, Y.K., Lee, M.J., Yoon, C.S., Hassoun, J., Amine, K., and Scrosati, B.: The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries. Adv. Mater. 24, 1192 (2012).CrossRefGoogle ScholarPubMed
Lee, D-K., Park, S-H., Amine, K., Bang, H.J., Parakash, J., and Sun, Y-K.: High capacity Li[Li0.2Ni0.2Mn0.6]O2 cathode materials via a carbonate co-precipitation method. J. Power Sources 162, 1346 (2006).CrossRefGoogle Scholar
Santhanam, R. and Rambabu, B.: High rate cycling performance of Li1.05Ni1/3Co1/3Mn1/3O2 materials prepared by sol-gel and co-precipitation methods for lithium-ion batteries. J. Power Sources 196, 4313 (2010).CrossRefGoogle Scholar