Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T04:22:36.670Z Has data issue: false hasContentIssue false

Synthesis of biocompatible and luminescent NaGdF4:Yb,Er@Carbon nanoparticles in water-in-oil microemulsion

Published online by Cambridge University Press:  01 January 2011

Xinghui Liu
Affiliation:
Department of Materials Physics, Zhejiang Normal University, Jinhua, Zhejiang 321004, People’s Republic of China
Limin Wang
Affiliation:
Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People’s Republic of China
Zeye Wang
Affiliation:
Department of Materials Physics, Zhejiang Normal University, Jinhua, Zhejiang 321004, People’s Republic of China
Zhengquan Li*
Affiliation:
Department of Materials Physics and Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: zqli@zjnu.edu.cn
Get access

Abstract

Here we present a microemulsion route to prepare core–shell structured NaGdF4:Yb,Er@Carbon nanoparticles, in which a thin layer of hydrophilic carbon was covered on hydrophobic NaGdF4:Yb,Er nanocrystals. The prepared NaGdF4:Yb,Er@Carbon nanoparticles were uniform in a size of 25 nm, water-dispersible, and displayed good biocompatibility and strong upconversion fluorescence. Their potential for use as efficient cell-imaging probes is also demonstrated.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Wang, F. and Liu, X.G.: Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 38, 976 (2009).Google Scholar
2.Vetrone, F. and Capobianco, J.A.: Lanthanide-doped fluoride nanoparticles: Luminescence, upconversion, and biological applications. Int. J. Nanotechnol. 5, 1306 (2008).Google Scholar
3.Wang, F., Tan, W.B., Zhang, Y., Fan, X.P., and Wang, M.Q.: Luminescent nanomaterials for biological labelling. Nanotechnology 17, R1 (2006).CrossRefGoogle Scholar
4.Chatterjee, D.K., Rufalhah, A.J., and Zhang, Y.: Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. Biomaterials 29, 937 (2008).Google Scholar
5.Nyk, M., Kumar, R., Ohulchanskyy, T.Y., Bergey, E.J., and Prasad, P.N.: High contrast in vitro and in vivo photoluminescence bioimaging using near infrared to near infrared up-conversion in Tm3+ and Yb3+ doped fluoride nanophosphors. Nano Lett. 8, 3834 (2008).Google Scholar
6.Idris, N.M., Li, Z.Q., Ye, L., Sim, E.K.W., Mahendran, R., Ho, P.C.L., and Zhang, Y.: Tracking transplanted cells in live animal using upconversion fluorescent nanoparticles. Biomaterials 30, 5104 (2009).Google Scholar
7.Shen, J., Sun, L.D., and Yan, C.H.: Luminescent rare earth nanomaterials for bioprobe applications. Dalton Trans. 5687 (2008).Google Scholar
8.Wang, L.Y., Yan, R.X., Hao, Z.Y., Wang, L., Zeng, J.H., Bao, H., Wang, X., Peng, Q., and Li, Y.D.: Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew. Chem. Int. Ed. 44, 6054 (2005).Google Scholar
9.Chen, Z.G., Chen, H.L., Hu, H., Yu, M.X., Li, F.Y., Zhang, Q., Zhou, Z.G., Yi, T., and Huang, C.H.: Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels. J. Am. Chem. Soc. 130, 3023 (2008).CrossRefGoogle ScholarPubMed
10.Liu, C., Wang, H., Zhang, X.R., and Chen, D.P.: Morphology- and phase-controlled synthesis of monodisperse lanthanide-doped NaGdF4 nanocrystals with multicolor photoluminescence. J. Mater. Chem. 19, 489 (2009).CrossRefGoogle Scholar
11.Ptacek, P., Schafer, H., Kompe, K., and Haase, M.: Crystal phase control of luminescing NaGdF4:Eu3+ nanocrystals. Adv. Funct. Mater. 17, 3843 (2007).CrossRefGoogle Scholar
12.Zhou, J., Sun, Y., Du, X.X., Xiong, L.Q., Hu, H., and Li, F.Y.: Dual-modality in vivo imaging using rare-earth nanocrystals with NIR-to-NIR upconversion luminescence and magnetic resonance properties. Biomaterials 31, 3287 (2010).Google Scholar
13.Park, Y.I., Kim, J.H., Lee, K.T., Jeon, K-S., Na, H.B., Yu, J.H., Kim, H.M., Leei, N., Cho, S.H., Baik, S-II., Kim, H., Park, S.P., Park, B-J., Kim, Y.W., Lee, S.H., Yoon, S-Y., Song, I.C., Moon, W.K., Suh, Y.D., and Hyeon, T.: Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent. Adv. Mater. 21, 4467 (2009).Google Scholar
14.Naccache, R., Vetrone, F., Mahalingam, V., Cuccia, L.A., and Capobianco, J.A.: Controlled synthesis and water dispersibility of hexagonal phase NaGdF4:Ho3+/Yb3+ nanoparticles. Chem. Mater. 21, 717 (2009).Google Scholar
15.Yang, W., Ratinac, K.R., Ringer, S.P., Thordarson, P., Gooding, J.J., and Braet, F.: Carbon nanomaterials in biosensors: Should you use nanotubes or graphene? Angew. Chem. Int. Ed. 49, 2114 (2010).CrossRefGoogle ScholarPubMed
16.Titirici, M-M. and Antonietti, M.: Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization. Chem. Soc. Rev. 39, 103 (2010).Google Scholar
17.Hu, B., Wang, K., Wu, L.H., Yu, S-H., Antonietti, M., and Titirici, M-M.: Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv. Mater. 22, 813 (2010).Google Scholar
18.Sun, X.M. and Li, Y.D.: Ag@C core/shell structured nanoparticles: Controlled synthesis, characterization, and assembly. Langmuir 21, 6019 (2005).Google Scholar
19.Wan, Y., Min, Y.L., and Yu, S.H.: Synthesis of silica/carbon-encapsulated core-shell spheres: Templates for other unique core-shell structures and applications in in-situ loading of noble-metal nanoparticles. Langmuir 24, 5024 (2008).CrossRefGoogle Scholar
20.Li, Z.Q. and Zhang, Y.: An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF4:Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence. Nanotechnology 19, 345606 (2008).Google Scholar
21.Yi, D.K., Selvan, T., Lee, S.S., Papaefthymiou, G.C., Kundaliya, D., and Ying, J.Y.: Silica-coated nanocomposites of magnetic nanoparticles and quantum dots. J. Am. Chem. Soc. 127, 4990 (2005).CrossRefGoogle ScholarPubMed
22.Li, Z.Q., Zhang, Y., and Jiang, S.: Multicolor core/shell-structured upconversion fluorescent nanoparticles. Adv. Mater. 20, 4765 (2008).Google Scholar
23.Sun, X.M. and Li, Y.D.: Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew. Chem. Int. Ed. 43, 597 (2004).Google Scholar