Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T22:31:33.610Z Has data issue: false hasContentIssue false

Surface preparation effect on duplex stainless steel passive film electrical properties studied by in situ CSAFM

Published online by Cambridge University Press:  18 August 2015

L.Q. Guo*
Affiliation:
Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), University of Science and Technology Beijing, Beijing 100083, People's Republic of China
B.J. Yang
Affiliation:
Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), University of Science and Technology Beijing, Beijing 100083, People's Republic of China
D. Liang
Affiliation:
Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), University of Science and Technology Beijing, Beijing 100083, People's Republic of China
L.J. Qiao
Affiliation:
Corrosion and Protection Center, Key Laboratory for Environmental Fracture (MOE), University of Science and Technology Beijing, Beijing 100083, People's Republic of China
*
a)Address all correspondence to this author. e-mail: glq@mater.ustb.edu.cn
Get access

Abstract

The effect of surface preparation—grinding, polishing, and electrochemical etching—on the duplex stainless steel passive film conductivity was investigated by in situ current sensing atomic force microscopy. The current maps show that the current in the passive film on three prepared surfaces is different, especially for the ferrite and austenite phase surface. The current on the austenite and ferrite is similar on either mechanical ground or polished surfaces, but the current on the austenite surface is much higher than current on the ferrite surface after electrochemical etching. The difference in the passive film conductivity originates from the changes in the chemical composition and thickness of the passive film and the change in topographical properties induced by the preparation procedures. This is confirmed by AFM, x-ray photoelectron spectroscopy, and auger electron spectroscopy measurements.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hakiki, N.E., Montemor, M.F., Ferreira, M.G.S., and da Cunha Belo, M.: Corros. Sci. 42, 687 (2000).Google Scholar
Ningshen, S., Kamachi Mudali, U., Mittal, V.K., and Khatak, H.S.: Corros. Sci. 49, 481 (2007).CrossRefGoogle Scholar
Stimming, U. and Schultze, J.W.: Electrochim. Acta 24, 859 (1979).CrossRefGoogle Scholar
Hakiki, N.E.: Corros. Sci. 53, 2688 (2011).CrossRefGoogle Scholar
Antony, P.J., Singh Raman, R.K., Mohanram, R., and Raman, R.: Corros. Sci. 50, 1858 (2008).Google Scholar
Kim, J.S., Cho, E.A., and Kwon, H.S.: Corros. Sci. 43, 1403 (2001).CrossRefGoogle Scholar
Paola, A.D., Quarto, F.D., and Sunseri, C.: Corros. Sci. 133, 1326 (1986).Google Scholar
Vignal, V., Krawiec, H., Heintz, O., and Mainy, D.: Corros. Sci. 67, 109 (2013).CrossRefGoogle Scholar
Rangel, C.M. and Silva, T.M.: Electrochim. Acta 50, 5076 (2005).CrossRefGoogle Scholar
Gluszek, J. and Nitsch, K.: Corros. Sci. 22, 1067 (1982).Google Scholar
Azumi, K., Ohtsuka, T., and Sato, N.: J. Electrochem. Soc. 133, 1326 (1986).Google Scholar
Hakiki, N.E., Boudin, S., Rondot, B., and Da Cunha Belo, M.: Corros. Sci. 37, 1809 (1995).Google Scholar
Marcus, P., Maurice, V., and Strehblow, H.H.: Corros. Sci. 50, 2698 (2008).Google Scholar
Amri, J., Souier, T., Malki, B., and Baroux, B.: Corros. Sci. 50, 431 (2008).CrossRefGoogle Scholar
Milosev, I. and Kapun, B.: Mater. Sci. Eng., C 32, 1087 (2012).CrossRefGoogle Scholar
Li, W. and Li, D.Y.: Acta Mater. 54, 445 (2006).Google Scholar
Li, W. and Li, D.Y.: Appl. Surf. Sci. 240, 388 (2005).Google Scholar
Souier, T., Martin, F., Bataillon, C., and Cousty, J.: Appl. Surf. Sci. 256, 2434 (2010).Google Scholar
Souier, T., and Chiesa, M.: J. Mater. Res. 27, 1580 (2012).Google Scholar
Guo, L.Q., Li, M.C., Qiao, L.J., and Volinsky, A.A.: Corros. Sci. 78, 55 (2014).CrossRefGoogle Scholar
Guo, L.Q., Li, M., Shi, X.L., Yan, Y., Li, X.Y., and Qiao, L.J.: Corros. Sci. 53, 3733 (2011).Google Scholar
Li, M., Guo, L.Q., Qiao, L.J., and Bai, Y.: Corros. Sci. 60, 76 (2012).Google Scholar
Guo, L.Q., Bai, Y., Xu, B.Z., Pan, W., Li, J.X., and Qiao, L.J.: Corros. Sci. 70, 140 (2013).Google Scholar
Guo, L.Q., Zhao, X.M., Li, M., Bai, Y., and Qiao, L.J.: Appl. Surf. Sci. 259, 213 (2012).Google Scholar
Guo, L.Q., Li, M.C., Qiao, L.J., and Volinsky, A.A.: Appl. Surf. Sci. 287, 499 (2013).Google Scholar
Wang, K., Tao, N.R., Liu, G., Lu, J., and Lu, K.: Acta Mater. 54, 5281 (2006).Google Scholar
Meng, F.J., Wang, J.Q., Han, E.H., and Ke, W.: Corros. Sci. 51, 2716 (2009).Google Scholar
Lv, J.L. and Luo, H.Y.: Mater. Chem. Phys. 139, 674 (2013).Google Scholar
Vignal, V., Delrue, O., Heintz, O., and Peultier, J.: Electrochim. Acta 55, 7118 (2010).Google Scholar
Garfias-Mesias, L.F., Skyes, J.M., and Tuck, C.D.S.: Corros. Sci. 38, 1319 (1996).CrossRefGoogle Scholar