Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T22:49:41.435Z Has data issue: false hasContentIssue false

Surface detection in nanoindentation of soft polymers

Published online by Cambridge University Press:  31 January 2011

Julia Deuschle
Affiliation:
Max Planck Institute (MPI) for Metals Research, Stuttgart 70569, Germany
Susan Enders*
Affiliation:
Max Planck Institute (MPI) for Metals Research, Stuttgart 70569, Germany
Eduard Arzt
Affiliation:
Max Planck Institute (MPI) for Metals Research, Stuttgart 70569, Germany
*
a)Address all correspondence to this author. e-mail: enders@mf.mpg.de
Get access

Abstract

In this work, we performed nanoindentation studies on polymers with different moduli in the range of several millipascals up to several gigapascals. The focus was on the initial contact identification during indentation testing. Surface-detection methods using quasi-static loading as well as methods employing the dynamic forces associated with the continuous stiffness measurement technique were compared regarding their practicability and accuracy for the testing of polymeric materials. For the most compliant material with a modulus of 1 MPa, where contact identification is most critical, we used load-displacement curves obtained from finite element modeling analysis as a reference for the evaluation of experimental techniques. The results show how crucial the precise surface detection is for achieving accurate indentation results, especially for compliant materials. Further, we found that surface detection by means of dynamic testing provides mechanical-property values of higher accuracy for all polymers used in this study. This was due to smaller errors in surface detection, thus avoiding a significant underestimation of the contact area.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Herrmann, K., Strobel, P.Stibler, A.: A new hardness testing method for very soft elastomers. Materialprüfung. 44, 83 2003Google Scholar
2Barbakadze, N., Enders, S., Gorb, S.Arzt, E.: Local mechanical properties of the head articulation cuticle in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae). J. Exp. Biol. 209(4), 722 2006CrossRefGoogle Scholar
3VanLandingham, M.R., Villarrubia, J.S., Guthrie, W.F.Meyers, G.F.: Nanoindentation of polymers: An overview., Proceedings of 220th American Chemical Society National Meeting, Macromolecular Symposia (Washington, DC, 2001), p. 153.0.CO;2-T>CrossRefGoogle Scholar
4Hayes, S.A., Goruppa, A.A.Jones, F.R.: Dynamic nanoindentation as a tool for the examination of polymeric materials. J. Mater. Res. 19, 3298 2004CrossRefGoogle Scholar
5Odegard, G.M., Gates, T.S.Herring, H.M.: Characterization of viscoelastic properties of polymeric materials through nanoindentation. Exp. Mech. 45, 130 2005CrossRefGoogle Scholar
6Li, Z., Brokken-Zijp, J.C.M.de With, G.: Determination of elastic moduli of silicone rubber coatings and films using depth-sensing indentation. Polymer 45, 5403 2004CrossRefGoogle Scholar
7White, C.C., VanLandingham, M.R., Drzal, P.L., Chang, N-K.Chang, S-H.: Viscoelastic characterization of polymers using instrumented indentation: II. Dynamic testing. J Polym. Sci., Part B: Polym. Phys. 43, 1812 2005CrossRefGoogle Scholar
8Loubet, J-L., Lucas, B.N.Oliver, W.C.: Some measurements of viscoelastic properties with the help of nanoindentation, NIST Special Publication 896,, Proceedings of International Workshop on Instrumented Indentation (San Diego, CA, 1995), p. 31Google Scholar
9Loubet, J-L., Oliver, W.C.Lucas, B.N.: Measurement of the loss tangent of low-density polyethylene with a nanoindetation technique. J. Mater. Res. 15, 1195 2000CrossRefGoogle Scholar
10Jamsa, T., Rho, J-Y., Fan, Z., Mackay, C.A., Marks, S.C. Jr.Tuukkanen, J.: Mechanical properties in long bones of rat osteoporotic mutations. J. Biomech. 35, 161 2002CrossRefGoogle Scholar
11Cuy, J.L., Mann, A.B., Livi, K.J.Teaford, M.F.: Nanoindentation mapping of the mechanical properties of human molar tooth enamel. Arch. Oral Biol. 47, 281 2002CrossRefGoogle ScholarPubMed
12Dickinson, M.E.Mann, A.B.: Nanomechanics and chemistry of caries-like lesions in dental enamel in Mechanical Properties of Bioinspired and Biological Materials, edited by C. Viney, K. Katti, F.-J. Ulm, and C. Hellmich (Mater. Res. Soc. Symp. Proc. 844, Warrendale, PA, 2005), p. Y9.2CrossRefGoogle Scholar
13Berger, E.J., Tripathy, S., Vemaganti, K., Kolambkar, Y.M., You, H.X., Courtney, K.: An atomic force indentation study of biomaterial properties, WTC 2005-63244,Proceedings of World Tribology Congress III Washington, DC 2005Google Scholar
14Ebenstein, D.M.Wahl, K.J.: A comparison of JKR-based methods to analyze quasi-static and dynamic indentation force curves. J. Colloid Interface Sci. 298, 652 2006CrossRefGoogle ScholarPubMed
15Tweedie, C.A.van Vliet, K.J.: On the indentation recovery and fleeting hardness of polymers. J. Mater. Res. 21, 3029 2006CrossRefGoogle Scholar
16Cao, Y., Yang, D.Soboyejoy, W.: Nanoindentation method for determining the initial contact and adhesion characteristics of soft polydimethylsiloxane. J. Mater. Res. 20, 2004 2005CrossRefGoogle Scholar
17Oliver, W.C.Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 1992CrossRefGoogle Scholar
18Oliver, W.C.Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 2004CrossRefGoogle Scholar
19Cheng, Y.T.Cheng, C.M.: Relationship between initial unloading slope, contact depth, and mechanical properties for conical indentation in linear viscoelastic solids. J. Mater. Res. 20, 1046 2005CrossRefGoogle Scholar
20Yang, S., Zhang, Y-W.Zeng, K.: Analysis of nanoindentation creep for polymeric materials. J. Appl. Phys. 95, 3655 2004CrossRefGoogle Scholar
21Tang, B.Ngan, A.H.W.: Accurate measurement of tip-sample contact size during nanoindentation of viscoelastic materials. J. Mater. Res. 18, 1141 2003CrossRefGoogle Scholar
22Fischer-Cripps, A.C.: A simple phenomenological approach to nanoindentation creep. Mater. Sci. Eng., A 385, 74 2004CrossRefGoogle Scholar
23Oyen, M.L.Cook, R.F.: Load-displacement behaviour during sharp indentation of viscous-elastic-plastic materials. J. Mater. Res. 18, 139 2003CrossRefGoogle Scholar
24Fischer-Cripps, A.C.: Multiple-frequency dynamic nanoindentation testing. J. Mater. Res. 19, 2981 2004CrossRefGoogle Scholar
25Lucas, B.N., Oliver, W.C., Pharr, G.M.Loubet, J-L.: Time dependent deformation during indentation testing in Thin Films: Stresses and Mechanical Properties VI, edited by W.W. Gerberich, H. Gao, J-E. Sundgren, and S.P. Baker (Mater. Res. Soc. Symp. Proc. 436, Pittsburgh, PA, 1997), p. 233CrossRefGoogle Scholar
26Nano Instruments Innovation CenterMTS Systems Corporation: Nanoindenter XP, Testworks 4 Software for Nanoindentation, Operating Instructions (2004),Google Scholar
27ABAQUS Analysis User’s Manual Version 6.6 Abagus Inc. Providence, RI 2006Google Scholar
28L.J. Guerin: The SU8 homepage, http://www.geocities.com/guerinlj/,Google Scholar
29Goodfellow GmbH, Friedberg, Germany, http://www.goodfellow.com,Google Scholar
30Ngan, A.H.W.Tang, B.: Viscoelastic effects during unloading in depth-sensing indentation. J. Mater. Res. 17, 2604 2002CrossRefGoogle Scholar
31Feng, G.Ngan, A.H.W.: Effects of creep and thermal drift on modulus measurement using depth-sensing indentation. J. Mater. Res. 17, 660 2002CrossRefGoogle Scholar
32Grunlan, J.C., Xia, X., Rowenhorst, D.Gerberich, W.W.: Preparation and evaluation of tungsten tips relative to diamond for nanoindentation of soft materials. Rev. Sci. Instrum. 72, 2804 2001CrossRefGoogle Scholar