Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T04:05:47.514Z Has data issue: false hasContentIssue false

Studies on the influence of structure units on the state of ytterbium ions in TeO2-based glasses

Published online by Cambridge University Press:  14 February 2020

Yonggang Liu*
Affiliation:
Analytical and Testing Center, Southwest University of Science and Technology, Mianyang 621010, China; and Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
Zhongyuan Lu*
Affiliation:
State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
Jianjie Xu
Affiliation:
State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
Tengxiao Guo
Affiliation:
State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
*
a)Address all correspondence to these authors. e-mail: s044154lyg@gmail.com
Get access

Abstract

A simple composition of TeO2–Yb2O3 binary glass was selected as the host glass matrix for discussing the structure of tellurite glass with increasing Yb2O3 content. Raman spectra were measured to investigate the structure of the binary tellurite glasses, and upconversion and downconversion fluorescence characteristics were employed for discussing the relationship between the structural units and the state of Yb3+ in the tellurite glasses. The results suggested that the decrease of TeO4/2 in the glasses would result in the formation of Yb3+ clusters and Yb3+–O2− couple in the tellurite glasses, and then results in the decrease of cooperative upconversion and downconversion fluorescence intensity.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gao, C., Huang, Z., Wang, Y., Zhan, H., Ni, L., Peng, K., Li, Y., Jia, Z., and Wang, X.: Yb-doped aluminophosphosilicate laser fiber. J. Lightwave Technol. 34, 5170 (2016).CrossRefGoogle Scholar
Yuan, M., Fan, H., Li, H., Lan, S., Tie, S., and Yang, Z.: Controlling the two-photon-induced photon cascade emission in a Gd3+/Tb3+-codoped glass for multicolor display. Sci. Rep. 6, 21091 (2016).CrossRefGoogle Scholar
Li, Z., Wang, Y., Peng, H., and Lv, J.: Study on syntheses and properties of light-conversion glass doped with rare earth. Opt. Eng. 57, 120502 (2018).CrossRefGoogle Scholar
Xia, L., Yue, Y., Yang, X., Deng, Y., Li, C., Zhuang, Y., Wang, R., You, W., and Liang, T.: Facile preparation and optical properties of Te/Pb-free Y3Al5O12:Ce3+ phosphor-in-glass via a screen-printing route for high-power WLEDs. J. Eur. Ceram. Soc. 39, 3848 (2019).CrossRefGoogle Scholar
Zhao, J., Huang, L., Zhao, S., and Xu, S.: Enhanced luminescences in Tb3+-doped germanate glass ceramic scintillators containing CaF2 nanocrystals. J. Am. Ceram. Soc. 102, 1720 (2019).Google Scholar
Wen, X., Tang, G., Yang, Q., Chen, X., Qian, Q., Zhang, Q., and Yang, Z.: Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser. Sci. Rep. 6, 1 (2016).Google Scholar
Muravyev, S., Anashkina, E., Andrianov, A., Dorofeev, V., Motorin, S., Koptev, M., and Kim, A.: Dual-band Tm3+-doped tellurite fiber amplifier and laser at 1.9 μm and 2.3 μm. Sci. Rep. 8, 1 (2018).CrossRefGoogle ScholarPubMed
Zhang, L., Xia, Y., Shen, X., and Wei, W.: Effects of GeO2 concentration on the absorption and fluorescence behaviors of Yb3+ in tellurite glasses. J. Lumin. 198, 364 (2018).CrossRefGoogle Scholar
Tagiara, N., Palles, D., Simandiras, E., Psycharis, V., Kyritsis, A., and Kamitsos, E.: Synthesis, thermal and structural properties of pure TeO2 glass and zinc-tellurite glasses. J. Non-Cryst. Solids 457, 116 (2017).CrossRefGoogle Scholar
Gulenko, A., Masson, O., Berghou, A., Hamani, D., and Thomas, P.: Atomistic simulations of TeO2-based glasses: Interatomic potentials and molecular dynamics. Phys. Chem. Chem. Phys. 16, 113 (2014).CrossRefGoogle ScholarPubMed
Garaga, M-N., Werner-Zwanziger, U., Zwanziger, J., DeCeanne, A., Hauke, B., Bozer, K., and Feller, S.: Short-range structure of TeO2 glass. J. Phys. Chem. C 121, 28117 (2017).CrossRefGoogle Scholar
Kavaklıoğlu, K-B., Aydin, S., Çelikbilek, M., and Ersund, A-E.: The TeO2–Na2O system: Thermal behavior, structural properties, and phase equilibria. Int. J. Appl. Glass Sci. 6, 406 (2015).CrossRefGoogle Scholar
Marple, M-A., Jesuit, M., Hung, I., Gan, Z., Feller, S., and Sen, S.: Structure of TeO2 glass: Results from 2D 125Te NMR spectroscopy. J. Non-Cryst. Solids 513, 183 (2019).CrossRefGoogle Scholar
Zhang, L., Xia, Y., Shen, X., Yang, R., and Wei, W.: Investigations on the effects of the Stark splitting on the fluorescence behaviors in Yb3+-doped silicate, tellurite, germanate, and phosphate glasses. Opt. Mater. 75, 1 (2018).CrossRefGoogle Scholar
Zhang, L., Xia, Y., Shen, X., and Wei, W.: Compositional dependence of broadband near-infrared downconversion and upconversion of Yb3+-doped multi-component glasses. Mater. Res. Express 4, 1 (2017).Google Scholar
Weingarten, D-H., LaCount, M-D., Van De Lagemaat, J., Rumbles, G., Lusk, M-T., and Shaheen, S-E.: Experimental demonstration of photon upconversion via cooperative energy pooling. Nat. Commun. 8, 14808 (2017).CrossRefGoogle ScholarPubMed
Feng, L., Bian, L., Ren, W., Zhang, X., and Li, H.: Cooperative upconversion of Tb3+/Yb3+-codoped oxyfluoride glasses. Mater. Res. Bull. 89, 263 (2017).CrossRefGoogle Scholar
Babu, P., Martín, I., Venkataiah, G., Venkatramu, V., Lavín, V., and Jayasankar, C.: Blue–green cooperative upconverted luminescence and radiative energy transfer in Yb3+-doped tungsten tellurite glass. J. Lumin. 169, 233 (2016).CrossRefGoogle Scholar
Maciel, G., Biswas, A., Kapoor, R., and Prasad, P.: Blue cooperative upconversion in Yb3+-doped multicomponent sol–gel-processed silica glass for three-dimensional display. Appl. Phys. Lett. 76, 1978 (2000).CrossRefGoogle Scholar
Xiao, K. and Yang, Z.: Blue cooperative luminescence in Yb3+-doped barium gallogermanate glass excited at 976 nm. J. Fluoresc. 16, 755 (2006).CrossRefGoogle ScholarPubMed
Wang, Y., Zhou, X., Shen, J., Zhao, X., Wu, B., Jiang, S., and Li, L.: Broadband near-infrared down-shifting by Yb–O charge-transfer band in Yb3+ singly doped tellurite glasses. J. Am. Ceram. Soc. 99, 115 (2016).CrossRefGoogle Scholar
Zhuang, Y., Teng, Y., Zhou, J., Ye, S., Liu, X., Lin, G., Ruan, J., and Qiu, J.: Broadband downconversion from oxygen-deficient centers to Yb3+ in germanate glasses. J. Opt. Soc. Am. B 26, 2185 (2009).CrossRefGoogle Scholar
Ye, S., Zhu, B., Liu, Y., Teng, Y., Lin, G., Lakshminarayana, G., Fan, X., and Qiu, J.: Conversion of near-ultraviolet radiation into visible and infrared emissions through energy transfer in Yb2O3 doped SrO–TiO2–SiO2 glasses. J. Appl. Phys. 105, 063508 (2009).CrossRefGoogle Scholar
Sekiya, T., Mochida, N., Ohtsuka, A., and Tonokawa, M.: Raman spectra of MO1/2TeO2 (M = Li, Na, K, Rb, Cs, and Tl) glasses. J. Non-Cryst. Solids 144, 128 (1992).CrossRefGoogle Scholar
Barney, E-R., Hannon, A-C., Holland, D., Umesaki, N., Tatsumisago, M., Orman, R-G., and Feller, S.: Terminal oxygens in amorphous TeO2. J. Phys. Chem. Lett. 4, 2312 (2013).CrossRefGoogle Scholar
Himei, Y., Osaka, A., Nanba, T., and Miura, Y.: Coordination change of Te atoms in binary tellurite glasses. J. Non-Cryst. Solids 177, 164 (1994).CrossRefGoogle Scholar
Sekiya, T., Mochida, N., Ohtsuka, A., and Tonokawa, M.: Normal vibrations of two polymorphic forms of TeO2 crystals and assignments of Raman peaks of pure TeO2 glass. J. Ceram. Soc. Jpn. 97, 1435 (1989).CrossRefGoogle Scholar
Costa, F., Souza, A., Langaro, A., Silva, J., Santos, F., Figueiredo, M., Yukimitu, K., Moraes, J., Nunes, L., and Andrade, L.: Observation of a Te4+ center with broad red emission band and high fluorescence quantum efficiency in TeO2-Li2O glass. J. Lumin. 198, 24 (2018).CrossRefGoogle Scholar
Davis, E. and Mott, N.: Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 22, 0903 (1970).CrossRefGoogle Scholar
Konijnendijk, W. and Stevels, J.: Structure of borate and borosilicate glasses by Raman spectroscopy, Borate Glasses. (Springer, Boston, 1978); p. 259.Google Scholar
Zhou, S., Zheng, B., Shimotsuma, Y., Lu, Y., Guo, Q., Nishi, M., Shimizu, M., Miura, K., Hirao, K., and Qiu, J.: Heterogeneous-surface-mediated crystallization control. NPG Asia Mater. 8, 245 (2016).CrossRefGoogle Scholar
Guo, Q., Liu, X., and Zhou, S.: Suppression of lanthanide clustering in glass by network topological constraints. J. Am. Ceram. Soc. 98, 2976 (2015).CrossRefGoogle Scholar
Zhou, S., Guo, Q., Inoue, H., Ye, Q., Masuno, A., Zheng, B., Yu, Y., and Qiu, J.: Topological engineering of glass for modulating chemical state of dopants. Adv. Mater. 26, 7966 (2014).CrossRefGoogle ScholarPubMed
Souza, A-K-R., Langaro, A-P., Silva, J-R., Costa, F-B., Yukimitu, K., Moraes, J-C-S., de Oliveira Nunes, L-A., da Cunha Andrade, L-H., and Lima, S-M.: On the efficient Te4+ → Yb3+ cooperative energy transfer mechanism in tellurite glasses: A potential material for luminescent solar concentrators. J. Alloys Compd. 781, 1119 (2019).CrossRefGoogle Scholar
Masai, H., Yamada, Y., Okumura, S., Kanemitsu, Y., and Yoko, T.: Photoluminescence of a Te4+ center in zinc borate glass. Opt. Lett. 38, 3780 (2013).CrossRefGoogle ScholarPubMed
Donker, H., Den Exter, M-J., Smit, W-M-A., and Blasse, G.: Luminescence of the Te4+ ion in ZrP2O7. J. Soild State Chem. 83, 361 (1989).CrossRefGoogle Scholar