Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T03:49:30.119Z Has data issue: false hasContentIssue false

Structure of and ion segregation to an alumina grain boundary: Implications for growth and creep

Published online by Cambridge University Press:  31 January 2011

Ivan Milas
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263; and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544-5263
Berit Hinnemann
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263; and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544-5263
Emily A. Carter*
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263; and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544-5263
*
b) Address all correspondence to this author. e-mail: eac@princeton.edu
Get access

Abstract

Using periodic density-functional theory (DFT), we investigated the structure and cohesive properties of the α-alumina Σ11 tilt grain boundary, with and without segregated elements, as a model for the thermally grown oxide in jet engine thermal barrier coatings. We identified a new low-energy structure different from what was proposed previously based on electron microscopy and classical potential simulations. We explored the structure and energy landscape at the grain boundary for segregated Al, O, and early transition metals (TMs) Y and Hf. We predict that the TMs preferentially adsorb at the same sites as Al, while some adsites favored by O remain unblocked by TMs. All segregated atoms have a limited effect on grain boundary adhesion, suggesting that adhesion energies alone cannot be used for predictions of creep inhibition. These findings provide some new insights into how TM dopants affect alumina growth and creep kinetics.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Padture, N.P., Gell, M.Jordan, E.H.: Materials science—Thermal barrier coatings for gas-turbine engine apptications. Science 296, 280 2002CrossRefGoogle Scholar
2Goward, G.W.: Progress in coatings for gas turbine airfoils. Surf. Coat. Technol. 108–109, 73 1998CrossRefGoogle Scholar
3Evans, A.G., Mumm, D.R., Hutchinson, J.W., Meier, G.H.Petit, F.S.: Mechanisms controlling the durability of thermal-barrier coatings. Prog. Mater. Sci. 46, 55 2001Google Scholar
4Pint, B.A., Martin, J.R.Hobbs, L.W.: O-18/SIMS characterization of the growth-mechanism of doped and undoped α–Al2O3. Oxid. Met. 39, 167 1993CrossRefGoogle Scholar
5Gall, M. Le, Huntz, A.M., Lesage, B., Monty, C.Bernardini, J.: Self-diffusion in α–Al2O3 and growth-rate of alumina scales formed by oxidation—Effect of Y2O3 doping. J. Mater. Sci. 30, 201 1995CrossRefGoogle Scholar
6Prot, D.Monty, C.: Self-diffusion in α–Al2O3. 2. Oxygen diffusion in ‘undoped’ single crystals. Philos. Mag. A 73, 899 1996CrossRefGoogle Scholar
7Gall, M. Le, Huntz, A.M., Lesage, B.Monty, C.: Self-diffusion in α–Al2O3. 3. Oxygen diffusion in single crystals doped with Y2O3. Philos. Mag. A 73, 919 1996Google Scholar
8Prot, D., Gall, M. Le, Lesage, B., Huntz, A.M.Monty, C.: Self-diffusion in α–Al2O3. 4. Oxygen grain-boundary self-diffusion in undoped and yttria-doped alumina polycrystals. Philos. Mag. A 73, 935 1996CrossRefGoogle Scholar
9Pan, J., Oijerholm, J., Belonoshko, A.B., Rosengren, A.Leyrgraf, C.: Self-diffusion activation energies in α–Al2O3 below 1000 °C—Measurements and molecular dynamics calculation. Philos. Mag. Lett. 84, 781 2004CrossRefGoogle Scholar
10Fielitz, P., Borchardt, G., Schmucker, M., Schneider, H.Willich, P.: Measurement of oxygen grain-boundary diffusion in mullite ceramics by SIMS depth profiling. J. Am. Ceram. Soc. 87, 2232 2004CrossRefGoogle Scholar
11Harding, J.H., Atkinson, K.J.W.Grimes, R.W.: Experiment and theory of diffusion in alumina. J. Am. Ceram. Soc. 86, 554 2003CrossRefGoogle Scholar
12Belonoshko, A.B., Rosengren, A., Dong, Q., Hultquist, G.Leygraf, C.: First-principles study of hydrogen diffusion in α–Al2O3 and liquid alumina. Phys. Rev. B 69, 024302 2004CrossRefGoogle Scholar
13Carrasco, J., Lopez, N.Illas, F.: First principles analysis of the stability and diffusion of oxygen vacancies in metal oxides. Phys. Rev. Lett. 93, 225502 2004CrossRefGoogle ScholarPubMed
14Oishi, Y.Kingery, W.D.: Self-diffusion of oxygen in single crystal and polycrystalline aluminum oxide. J. Chem. Phys. 33, 480 1960CrossRefGoogle Scholar
15Kitazawa, K.Coble, R.L.: Chemical diffusion in polycrystalline Al2O3 as determined from electrical-conductivity measurements. J. Am. Ceram. Soc. 57, 250 1974CrossRefGoogle Scholar
16Pint, B.A.: Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect. Oxid. Metal. 45, 1 1996CrossRefGoogle Scholar
17Wright, I.G.Pint, B.A.: Bond coating issues in thermal barrier coatings for industrial gas turbines. Proc. IMechE 219, 101 2005CrossRefGoogle Scholar
18Cho, J., Wang, C.M., Chan, H.M., Rickman, J.M.Harmer, M.P.: Grain boundary chemistry and creep resistance of oxide ceramics. Acta Mater. 47, 4197 1999CrossRefGoogle Scholar
19Hou, P.Y.: Impurity effects on alumina scale growth. J. Am. Ceram. Soc. 86, 660 2003CrossRefGoogle Scholar
20French, J.D., Zhao, J., Harmer, M.P., Chan, H.M.Miller, G.A.: Creep of duplex microstructures. J. Am. Ceram. Soc. 77, 2857 1994CrossRefGoogle Scholar
21Cho, J., Harmer, M.P., Chan, H.M., Rickman, J.M.Thompson, A.M.: Effect of yttrium and lanthanum on the tensile creep behavior of aluminum oxide. J. Am. Ceram. Soc. 80, 1013 1997CrossRefGoogle Scholar
22Rühle, M.: Structure and composition of metal-ceramic interfaces. J. Eur. Ceram. Soc. 16, 353 1996CrossRefGoogle Scholar
23Höche, T., Kenway, P.R., Kleebe, H-J., Finnis, M.W.Rühle, M.: The structure of special grain-boundaries in α–Al2O3. J. Phys. Chem. Solids 55, 1067 1994CrossRefGoogle Scholar
24Richter, G.Rühle, M.: Quantitative HRTEM investigations of a symmetrical tilt Sigma 11 grain boundary with two different grain boundary planes in α–Al2O3. Interface Sci. 12, 197 2004CrossRefGoogle Scholar
25Höche, T., Kenway, P.R., Kleebe, H-J., Rühle, M.Morris, P.A.: High-resolution transmission electron-microscopy studies of a near Σ11 grain boundary in α–Al2O3. J. Am. Ceram. Soc. 77, 339 1994CrossRefGoogle Scholar
26Kenway, P.R.: Calculated structures and energies of grain-boundaries in α–Al2O3. J. Am. Ceram. Soc. 77, 349 1994CrossRefGoogle Scholar
27Mo, S-D., Ching, W-Y.French, R.F.: Electronic structure of a near Σ11 a-axis tilt grain boundary in α–Al2O3. J. Am. Ceram. Soc. 79, 627 1996CrossRefGoogle Scholar
28Müllejans, H.French, R.H.: Interband electronic structure of a near-Σ11 grain boundary in α–Al2O3 determined by spatially resolved valence electron energy-loss spectroscopy. J. Phys. D: Appl. Phys. 29, 1751 1996CrossRefGoogle Scholar
29Elsässer, C.Marinopoulos, A.G.: Substitutional cation impurities in α–Al2O3: Ab-initio case study of segregation to the rhombohedral twin boundary. Acta Mater. 49, 2951 2001Google Scholar
30Fabris, S.Elsässer, C.: Σ13 1014 twin in α–Al2O3: A model for a general grain boundary. Phys. Rev. B 64, 245117 2001CrossRefGoogle Scholar
31Fabris, S.Elsässer, C.: First-principles analysis of cation segregation at grain boundaries in α–Al2O3. Acta Mater. 51, 71 2003Google Scholar
32Cho, J., Rickman, J.M., Chan, H.M.Harmer, M.P.: Modeling of grain-boundary segregation behavior in aluminum oxide. J. Am. Ceram. Soc. 83, 344 2000CrossRefGoogle Scholar
33Hohenberg, P.Kohn, W.: Inhomogeneous electron gas. Phys. Rev. B 136, 864 1964CrossRefGoogle Scholar
34Kohn, W.Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 1965CrossRefGoogle Scholar
35Kresse, G.Hafner, J.: Ab initio molecular dynamics for open-shell transition-metals. Phys. Rev. B 48, 13115 1993CrossRefGoogle ScholarPubMed
36Kresse, G.Fürthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 1996CrossRefGoogle ScholarPubMed
37Kresse, G.Fürthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 1996CrossRefGoogle Scholar
38Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953 1994CrossRefGoogle ScholarPubMed
39Kresse, G.Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 1999CrossRefGoogle Scholar
40Perdew, J.P., Burke, K.Erzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 1996CrossRefGoogle ScholarPubMed
41Monkhorst, H.J.Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188 1976CrossRefGoogle Scholar
42Hinnemann, B.Carter, E.A.: Adsorption of Al, O, Hf, Y, Pt, and S atoms on α–Al2O3 0001. J. Phys. Chem. C 111, 7105 2007CrossRefGoogle Scholar
43Voytovych, R., MacLaren, I., Gülgün, M.A., Cannon, R.M.Rühle, M.: The effect of yttrium on densification and grain growth in α–Al2O3. Acta Mater. 50, 3453 2002CrossRefGoogle Scholar
44Wang, C.M., Cargill, G.S. III, Chan, H.M.Harmer, M.P.: Structural features of Y-saturated and supersaturated grain boundaries in alumina. Acta Mater. 48, 2579 2000CrossRefGoogle Scholar
45Milas, I., Carter, E.A.: unpublished,Google Scholar
46Carter, E.A.Goddard, W.A. III: Early-transition versus late-transition metal-oxo bonds—The electronic structrure of VO+ and RuO+. J. Phys. Chem. 92, 2109 1988CrossRefGoogle Scholar
47Noguchi, T.Mizuno, M.: Kogyo Kogaku Zasshi 70, 839 1967Google Scholar
48Fabrichnaya, O.Mercer, C.: Phase relations in the HfO2– Y2O3–Al2O3 system. Calphad 29, 239 2005CrossRefGoogle Scholar
49Reddy, K.P.R., Smialek, J.L.Cooper, A.R.: O-18 tracer studies of Al2O3 scale formation on NiCrAl alloys. Oxid. Met. 17, 429 1982CrossRefGoogle Scholar
50Bouchet, D., Lartigue-Korinek, S., Molins, R.Thibault, J.: Yttrium segregation and intergranular defects in alumina. Philos. Mag. A 86, 1401 2006CrossRefGoogle Scholar
51Chi, M.F.Gu, H.: Comparison of segregation behaviors for special and general boundaries in polycrystalline Al2O3 with SiO2–TiO2 impurities. Inter. Sci. 12, 335 2004Google Scholar
52Ruano, O.A., Wadsworth, J.Sherby, O.D.: Deformation of fine-grained alumina by grain boundary sliding accommodated by slip. Acta Mater. 51, 3617 2003CrossRefGoogle Scholar
53Wang, J.N.: An investigation of the deformation mechanism in grain size-sensitive newtonian creep. Acta Mater. 48, 1517 2000CrossRefGoogle Scholar
54Matsunaga, K., Nishimura, H., Muto, H., Yamamoto, T.Ikuhara, Y.: Direct measurements of grain boundary sliding in yttrium-doped alumina bicrystals. Appl. Phys. Lett. 82, 1179 2003CrossRefGoogle Scholar
55Buban, J.P., Matsunaga, K., Chen, J., Shibata, N., Ching, W.Y., Yamamoto, T.Ikuhara, Y.: Grain boundary strengthening in alumina by rare earth impurities. Science 311, 212 2006CrossRefGoogle ScholarPubMed
56Adams, J.Rogers, M.D.: The crystal structure of ZrO2 and HfO2. Acta Crystall. 12, 951 1959CrossRefGoogle Scholar
57Repelin, Y., Proust, C., Husson, E.Beny, J.M.: Vibrational spectroscopy of the c-form of yttrium sesquioxide. J. Solid State Chem. 118, 163 1995CrossRefGoogle Scholar
58Finger, L.W.Hazen, R.M.: Crystal-structure and compression of ruby to 46 kbar. J. Appl. Phys. 49, 5823 1978CrossRefGoogle Scholar
59CRC Handbook of Chemistry and Physics 79 ed. edited by D.R. Linde and H.P.R. Frederikse CRC Press publisher-name>Boca Raton, FL 1999Boca+Raton,+FL1999>Google Scholar