Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T01:21:46.028Z Has data issue: false hasContentIssue false

The spreading kinetics of Ag–28Cu(L) on nickel(S): Part I. Area of spread tests on nickel foil

Published online by Cambridge University Press:  31 January 2011

Douglas A. Weirauch Jr.
Affiliation:
Electronic Packaging Center, Alcoa Technical Center, Alcoa Center, Pennsylvania 15069–0001
William J. Krafick
Affiliation:
Electronic Packaging Center, Alcoa Technical Center, Alcoa Center, Pennsylvania 15069–0001
Get access

Abstract

Dynamic hot-stage microscopy and sessile drop experiments have identified three stages in the spreading of Ag–28 wt. % Cu liquid on the surface of high-purity Ni foil: (I) nonreactive flow, (II) secondary spreading, and (III) breakout flow. The first stage is deGennes-type spreading driven by capillary forces and resisted by viscous drag. A (Cu, Ni) reaction layer forms quickly at temperature along the liquid-solid interface. Stage I ends when the liquid braze attains a quasistatic contact angle on the reacted surface. Stage II spreading involves a complex advance of a thin liquid sheet outward from the triple line as a result of differences in wetting between Ni grain surfaces and grain boundaries. The advancing liquid meniscus is distorted as the liquid moves ahead along the better wetted grain boundary regions and is held back (pinned) on those surfaces that are poorly wet, resulting in a stick-slip motion of the triple line. The change in contact area with time is linear during this stage, and the rate of spreading is independent of temperature in the range of 780–870 °C. Although the diffusion of Cu into Ni grain boundaries likely drives the capillary flow, it is not the controlling process since an activation energy is not observed. The final stage of spreading, breakout flow, involves the flooding of the liquid braze over previously wetted surfaces due to a change in the balance of interfacial energies. Spreading ends during stage II or III either by isothermal solidification which stems from interdiffusion between the braze filler and the substrate or by curtailment of the liquid supply when it pulls back on the (Cu, Ni) reaction layer. Hold time, peak temperature, and heating rate all have an effect on both the terminal area of spread and the spreading kinetics of braze flow on polycrystalline Ni. The heating rate effect has not been emphasized in previously published literature for soldering and brazing and, if overlooked could easily impair one's ability to apply test results to other studies or practical situations. Roughness-enhanced spreading was not observed with the Ni foil surfaces used in this study. There was, however, a localized effect on the shape of the triple line that did not affect spreading kinetics or terminal area of spread in a systematic fashion.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Sahara, H., Emoto, Y., and Otsuka, K., in Proc. 32nd IEEE Elec. Components Conf. (1982), pp. 3235.Google Scholar
2.Weirauch, D. A. Jr., Welding J. 73, 110s (1994).Google Scholar
3.Vaughan, J. G., in Proc. 2nd Symp. on Design and Finishing of Printed Wiring and Hybrid Circuits, AES, San Francisco, CA (1980), pp. 120.Google Scholar
4.Chen, F-G., Electronic Packaging and Production 28, 132 (1988).Google Scholar
5.Keusseyan, R. L., Goeller, P. T., Page, J. P., Osborne, J. J., Nebe, W. J., and Polzer, E.K., in Proc. IEEE/ISHM '90 IEMT Symp., Italy (1990), pp. 186195.Google Scholar
6.Hey, A. W., in Joining of Ceramics, edited by Nicholas, M. G. (Chapman and Hall, London, 1990), p. 56.Google Scholar
7.Kohl, W. H., Vacuum 14, 175 (1964).CrossRefGoogle Scholar
8.Schwartz, M.M., in Welding Brazing and Soldering (ASM INTERNATIONAL, Materials Park, OH, 1993), pp. 114125.CrossRefGoogle Scholar
9.Williams, J. C. and Nielsen, J.W., J. Am. Ceram. Soc. 42, 229 (1959).CrossRefGoogle Scholar
10.Denton, E. P. and Rawson, H., Trans. Brit. Ceram. Soc. 59, 25 (1960).Google Scholar
11.Yoshida, H. and Morikawa, M., in 6th Int. Precious Metals Inst. Conf., Newport Beach, CA, June 7–11 (Pergamon Press, Inc., New York, 1982), pp. 185199.Google Scholar
12.Bannos, T. S., Heat Treatment of Metals 2, 35 (1984).Google Scholar
13.Takemoto, T., Okamoto, I., and Matsumura, J., Trans. JWRI 18, 199 (1989).Google Scholar
14.Chatterjee, S. K., Mingxi, Z., and Chilton, A. C., Welding J. 70, 118s (1991).Google Scholar
15.Humpston, G. and Jacobson, D.M., in Principles of Soldering and Brazing (ASM INTERNATIONAL, Materials Park, OH, 1993), p. 188.Google Scholar
16.Nicholas, M. and Pole, D. M., Trans. Metall. Soc. AIME 236, 1535 (1966).Google Scholar
17.Sharps, P. R., Tomsia, A.P., and Pask, J.A., Acta Metall. 29, 855 (1981).CrossRefGoogle Scholar
18.Ambrose, J. C., Jenkins, S.L., and Nicholas, M.G., in Proc. High Technol. Joining Conf. (1987), pp. 9.1–9.9.Google Scholar
19.Ambrose, J. C. and Nicholas, M.G., in Proc. 1st Int. Conf., Eu-romat '89, November 22–24, Aachen, Germany (1987), Vol. 2, pp. 10731087.Google Scholar
20.Ambrose, J. C., Nicholas, M. G., Young, N., and Jenkins, S. L., Mater. Sci. Technol. 6, 1021 (1990).CrossRefGoogle Scholar
21.Gale, W. F. and Wallach, E. R., Welding and Cutting 7, E143 (1991).Google Scholar
22.Ambrose, J. C., Nicholas, M.G., and Stoneham, A. M., Acta Metall. Mater. 40, 2483 (1992).CrossRefGoogle Scholar
23.Ambrose, J. C., Nicholas, M.G., and Stoneham, A. M., Acta Metall. Mater. 41, 2395 (1993).CrossRefGoogle Scholar
24.Hamshire, B. and Wolverton, M., in The Mechanics of Solder Alloy Wetting and Spreading, edited by Yost, F.G., Hosking, F.M., and Frear, D. (Van Nostrand Reinhold, New York, 1993), p. 22.Google Scholar
25.Aksay, I. A., Hoge, C.E., and Pask, J.A., J. Phys. Chem. 78, 1173 (1974).CrossRefGoogle Scholar
26.Tomsia, A. P., Feipeng, Z., and Pask, J. A., Acta Metall. 30, 1203 (1981).CrossRefGoogle Scholar
27.deGennes, P., Rev. Mod. Phys. 57, 827 (1985).CrossRefGoogle Scholar
28.Klein-Wassink, R. J., in Soldering in Electronics, 2nd ed. (Eloc-trochemical Publications, Ltd., Ayr, Scotland, 1989), pp. 7883.Google Scholar
29.Marmur, A., Adv. Colloid Interf. Sci. 19, 75 (1983).CrossRefGoogle Scholar
30.Dodge, F. T., J. Coll. Int. Sci. 121, 154 (1988).CrossRefGoogle Scholar
31.Naidich, Ju. V., in Prog. Surf. Membrane Sci., edited by Cadenhead, D. A. and Danielli, J. F. (Academic Press, New York, 1981), Vol. 14, pp. 353484.Google Scholar
32.Nagesh, V. K. and Pask, J. A., J. Mater. Sci. 18, 2665 (1983).CrossRefGoogle Scholar
33.Brophy, J.H., Rose, R.M., and Wulff, J., in Thermodynamics of Structure (John Wiley and Sons, Inc., New York, 1964), pp. 4659.Google Scholar
34.Flaitz, P. L. and Pask, J.A., J. Am. Ceram. Soc. 70, 449 (1987).CrossRefGoogle Scholar
35.Barrett, C. S. and Massalski, T.B., in Structure of Metals, 3rd ed. (McGraw-Hill Book Co., New York, 1966), pp. 555558.Google Scholar
36.Adamson, A. W., in Physical Chemistry of Surfaces (John Wiley / Sons, New York, 1982), pp. 260293.Google Scholar
37.Reed-Hill, R. E., in Physical Metallurgy Principles, 2nd ed. (Van Nostrand Company, New York, 1973), pp. 213222.Google Scholar
38.Wenzel, R.N., Ind. Eng. Chem. 28, 988 (1936).CrossRefGoogle Scholar
39.Wenzel, R.N., J. Phys. Chem. 53, 1466 (1949).CrossRefGoogle Scholar
40.Shuttleworth, R. and Bailey, G. L. J., Discuss. Faraday Soc. 3, 546 (1948).CrossRefGoogle Scholar
41.Bailey, G. L. T. and Watkins, H.C., J. Inst. Metals 80, 57 (1951/1952).Google Scholar
42.Milner, D. R., Brit. Welding J. 5, 90 (1958).Google Scholar
43.Parker, E. R. and Smoluchowski, R., Trans. ASM 35, 362 (1945).Google Scholar
44.DeJonghe, V., Chatain, D., Rivollet, I., and Eustathopoulos, N., J. Chim. Phys. 87, 1623 (1990).CrossRefGoogle Scholar
45.Hitchcock, S.J., Carroll, N.T., and Nicholas, M. G., J. Mater. Sci. 16, 714 (1981).CrossRefGoogle Scholar
46.Oliver, J.F. and Mason, S.G., J. Mater. Sci. 15, 431 (1980).CrossRefGoogle Scholar
47.Nicholas, M. G. and Crispin, R.M., J. Mater. Sci. 21, 522 (1986).CrossRefGoogle Scholar
48.Yost, F. G., Michael, J. R., and Eisenmann, E. T., Acta Metall. Mater. 43, 299 (1995).CrossRefGoogle Scholar
49.Pask, J.A. and Tomsia, A.P., Mater. Sci. Res. 14, 411 (1981).Google Scholar
50.Laurent, V., Chatain, C., Chatillon, C., and Eustathopoulos, N., Acta Metall. 36, 1797 (1988).CrossRefGoogle Scholar
51.Yost, F. G. and Romig, A. D. Jr., in ElectronicPackagingMaterials Science III, edited by Jaccodine, R., Jackson, K. A., and Sundahl, R.C. (Mater. Res. Soc. Symp. Proc. 108, Pittsburgh, PA, 1988), pp. 385390.Google Scholar
52.Kim, H. K., Liou, H. K., Tu, K. N., J. Mater. Res. 10 497 (1995).CrossRefGoogle Scholar
53.Yoshimi, N., Nakae, H., and Fujii, H., Mat. Trans. JIM 31, 141 (1990).CrossRefGoogle Scholar
54.Subramanian, P. R. and Perepezko, J. H., J. P. E. 14 (1993).Google Scholar
55.Weirauch, D. A. Jr., Phys. Chem. Glasses 35, 219 (1994).Google Scholar
56.Yin, T. P., J. Phys. Chem. 73, 2413 (1969).CrossRefGoogle Scholar
57.Sebo, P., Gallois, B., and Lupis, C. H. P., Metall. Trans. B 8B, 691 (1977).CrossRefGoogle Scholar
58.Gebhardt, E. and Worwag, G., Z. Metallk. 42, 358 (1951).Google Scholar
59.Boettinger, W., Handwerker, C. A., and Kattner, U. R., in The Mechanics of Solder Alloy Wetting and Spreading, edited by Yost, F.G., Hosking, F. M., and Frear, D. R. (Van Nostrand Reinhold, New York, 1993), p. 125.Google Scholar
60.Singler, T. J., Clum, J.A., and Prack, E.R., Paper 91-WA-EEP-37, ASME Winter Annual Meeting, Atlanta, GA, December 1–6, 1991.Google Scholar
61.Bondi, A., Chem. Rev. 52, 417 (1953).CrossRefGoogle Scholar
62.Chen, S-W., Mater. Chem. Phys. 33, 271 (1993).Google Scholar
63.Newman, S., J. Coll. Int. Sci. 26, 209 (1968).CrossRefGoogle Scholar
64.Brandes, E. A. and Brook, G. B., in Smithells Metals Reference Book, 7th ed. (Butterworth Heinemann, Ltd., Oxford, England, 1992), pp. 14–6 to 14-10.Google Scholar
65.Ishida, T., Mater. Sci. Technol. 4, 830 (1988).CrossRefGoogle Scholar
66.Nadkarni, G. D. and Garoff, S., Europhys. Lett. 20, 523 (1992).CrossRefGoogle Scholar
67.Marsh, J. A. and Cazabat, A. M., Europhys. Lett. 23, 45 (1993).CrossRefGoogle Scholar
68.DeJonhge, V. and Chatain, D., Acta. Metall. Mater. 43, 1505 (1995).Google Scholar
69.Wang, X. and Conrad, H., Metall. Mater. Trans. A 26A, 459 (1995).CrossRefGoogle Scholar
70.Ahn, J-H., Terao, N., and Berghezan, A., Scripta Metall. 22, 793 (1988).CrossRefGoogle Scholar
71.Nicholas, M. G. and Peteves, S.D., in High Temperature Capillarity (Inst. Inorg. Chem., Slovak Academy of Sciences, Bratislava, Slovakia, 1994), pp. 1827.Google Scholar
72.Naidich, Yu. V., Voitovich, R. P., and Kolesnichenko, G. A., Powder Metallurgy and Metal Ceramics 33, 418 (1994).CrossRefGoogle Scholar