Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-24T11:13:32.630Z Has data issue: false hasContentIssue false

Solvent effect on the structure and photocatalytic behavior of TiO2-RGO nanocomposites

Published online by Cambridge University Press:  22 November 2019

Bruno S. Gonçalves*
Affiliation:
Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brasil
Lucas M.C. Silva
Affiliation:
Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brasil
Tarcizo C.C. de Souza
Affiliation:
Centro de Tecnologia em Nanomateriais e Grafeno (CTNano), Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brasil
Vinícius G. de Castro
Affiliation:
Centro de Tecnologia em Nanomateriais e Grafeno (CTNano), Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brasil
Glaura G. Silva
Affiliation:
Centro de Tecnologia em Nanomateriais e Grafeno (CTNano), Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brasil; and Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brasil
Bruno C. Silva
Affiliation:
Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brasil
Klaus Krambrock
Affiliation:
Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brasil
Renata B. Soares
Affiliation:
Departamento de Engenharia Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brasil
Vanessa F.C. Lins
Affiliation:
Departamento de Engenharia Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brasil
Manuel Houmard*
Affiliation:
Departamento de Engenharia de Materiais e Construção, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brasil
Eduardo H.M. Nunes*
Affiliation:
Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brasil
*
a)Address all correspondence to these authors. e-mail: brunosg.eq@gmail.com
Get access

Abstract

There is no agreement regarding which solvent is more suitable to obtain sol–gel–derived titania (TiO2) samples with an enhanced photocatalytic behavior. Furthermore, the solvent effect on the preparation of TiO2-RGO (reduced graphene oxide) nanocomposites has not been published yet and could be an attractive experimental strategy to modulate structure and properties. On the basis of these observations, TiO2-RGO nanocomposites were fabricated in this study. It was evaluated for the influence of using either isopropyl (IsoprOH) or ethyl (EtOH) alcohol on the textural and photocatalytic properties of the prepared materials. The use of IsoprOH led to samples with smaller crystallite size, narrower apparent band gap, smaller isoelectric point, larger adsorption capacity, and higher photocatalytic activity. In addition, the incorporation of RGO into TiO2 greatly improved the adsorption capacity and photocatalytic activity of the latter. However, the optimal loading of RGO to prepare composites with enhanced photocatalytic activities was 1 wt%. This finding can be related to the stacking of RGO sheets when concentrations above 1 wt% are used, which could prevent UV light to reach the TiO2 particles and also decrease the photocatalytic capacity of the composites. Moreover, materials with RGO concentration above 1 wt% could exhibit a highly negatively charged surface, which may decrease the separation of the generated electron–hole pairs and lead to faster recombination rates of charge carriers.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Li, C., Zhao, Z., Shindume Lomboleni, H., Huang, H., and Peng, Z.: Enhanced visible photocatalytic activity of nitrogen doped single-crystal-like TiO2 by synergistic treatment with urea and mixed nitrates. J. Mater. Res. 32, 737 (2017).CrossRefGoogle Scholar
Liu, Y., Su, D., Zhang, Y., Wang, L., Yang, G., Shen, F., Deng, S., Zhang, X., and Zhang, S.: Anodized TiO2 nanotubes coated with Pt nanoparticles for enhanced photoelectrocatalytic activity. J. Mater. Res. 32, 757 (2017).CrossRefGoogle Scholar
Lyu, Z., Liu, B., Wang, R., and Tian, L.: Synergy of palladium species and hydrogenation for enhanced photocatalytic activity of {001} facets dominant TiO2 nanosheets. J. Mater. Res. 32, 2781 (2017).CrossRefGoogle Scholar
Li, F., Han, T., Wang, H., Zheng, X., Wan, J., and Ni, B.: Morphology evolution and visible light driven photocatalysis study of Ti3+ self-doped TiO2−x nanocrystals. J. Mater. Res. 32, 1563 (2017).CrossRefGoogle Scholar
Zhang, W., Wang, C., Liu, X., and Li, J.: Enhanced photocatalytic activity in porphyrin-sensitized TiO2 nanorods. J. Mater. Res. 32, 2773 (2017).CrossRefGoogle Scholar
Li, X., Yu, J., Jaroniec, M., and Chen, X.: Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 119, 3962 (2019).CrossRefGoogle ScholarPubMed
Wang, J., Liu, B., and Nakata, K.: Effects of crystallinity, {001}/{101} ratio, and Au decoration on the photocatalytic activity of anatase TiO crystals. Chin. J. Catal. 40, 403 (2019).CrossRefGoogle Scholar
Wu, J., Lo, S., Song, K., Vijayan, B.K., Li, W., Gray, K.A., and Dravid, V.P.: Growth of rutile TiO2 nanorods on anatase TiO2 thin films on Si-based substrates. J. Mater. Res. 26, 1646 (2011).CrossRefGoogle Scholar
Liu, L., Zhao, H., Andino, J.M., and Li, Y.: Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: Comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry. ACS Catal. 2, 1817 (2012).CrossRefGoogle Scholar
Xu, M., Gao, Y., Moreno, E.M., Kunst, M., Muhler, M., Wang, Y., Idriss, H., and Wöll, C.: Photocatalytic activity of bulk TiO2 anatase and rutile single crystals using infrared absorption spectroscopy. Phys. Rev. Lett. 106, 138302 (2011).CrossRefGoogle ScholarPubMed
Hanaor, D.A.H. and Sorrell, C.C.: Review of the anatase to rutile phase transformation. J. Mater. Sci. 46, 855 (2011).CrossRefGoogle Scholar
Zhang, J., Zhou, P., Liu, J., and Yu, J.: New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys. Chem. Chem. Phys. 16, 20382 (2014).CrossRefGoogle ScholarPubMed
Ji, L., Qiao, W., Huang, K., Zhang, Y., Wu, H., Miao, S., Liu, H., Dong, Y., Zhu, A., and Qiu, D.: Synthesis of nanosized 58S bioactive glass particles by a three-dimensional ordered macroporous carbon template. Mater. Sci. Eng., C 75, 590 (2017).CrossRefGoogle ScholarPubMed
Brinker, C. and Scherer, G.: Sol–Gel Science: The Physics and Chemistry of Sol–Gel Processing (Academic Press, New York, 1990).Google Scholar
Xu, Y., Zheng, W., and Liu, W.: Enhanced photocatalytic activity of supported TiO2: Dispersing effect of SiO2. J. Photochem. Photobiol., A 122, 57 (1999).CrossRefGoogle Scholar
Ohno, T., Tokieda, K., Higashida, S., and Matsumura, M.: Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene. Appl. Catal., A 244, 383 (2003).CrossRefGoogle Scholar
Scanlon, D.O., Dunnill, C.W., Buckeridge, J., Shevlin, S.A., Logsdail, A.J., Woodley, S.M., Catlow, C.R.A., Powell, M.J., Palgrave, R.G., Parkin, I.P., Watson, G.W., Keal, T.W., Sherwood, P., Walsh, A., and Sokol, A.A.: Band alignment of rutile and anatase TiO2. Nat. Mater. 12, 798 (2013).CrossRefGoogle Scholar
Mahyar, A. and Amani-Ghadim, A.R.: Influence of solvent type on the characteristics and photocatalytic activity of TiO2 nanoparticles prepared by the sol–gel method. Micro & Nano Lett. 6, 244 (2011).CrossRefGoogle Scholar
Behnajady, M.A., Eskandarloo, H., Modirshahla, N., and Shokri, M.: Investigation of the effect of sol–gel synthesis variables on structural and photocatalytic properties of TiO2 nanoparticles. Desalination 278, 10 (2011).CrossRefGoogle Scholar
Alonso, E., Montequi, I., and Cocero, M.J.: Effect of synthesis conditions on photocatalytic activity of TiO2 powders synthesized in supercritical CO2. J. Supercrit. Fluids 49, 233 (2009).CrossRefGoogle Scholar
Andrés, C., López, C., Esperanza, S., Gómez, R., Hurtado, A.C., Azucena, S., and Duarte, G.: Effect of the synthesis variables of TiO2 on the photocatalytic activity towards the degradation of water pollutants. Rev. Fac. Ing., Univ. Antioquia 57, 49 (2011).Google Scholar
Wu, Y.C. and Tai, Y.C.: Effects of alcohol solvents on anatase TiO2 nanocrystals prepared by microwave-assisted solvothermal method. J. Nanoparticle Res. 15, 1686 (2013).CrossRefGoogle Scholar
Li, X., Yu, J., Wageh, S., Al-Ghamdi, A.A., and Xie, J.: Graphene in photocatalysis: A review. Small 12, 6640 (2016).CrossRefGoogle ScholarPubMed
Li, X., Shen, R., Ma, S., Chen, X., and Xie, J.: Graphene-based heterojunction photocatalysts. Appl. Surf. Sci. 430, 53 (2018).CrossRefGoogle Scholar
Ghayoor, R., Keshavarz, A., and Soltani Rad, M.N.: Facile preparation of TiO2 nanoparticles decorated by the graphene for enhancement of dye-sensitized solar cell performance. J. Mater. Res. 34, 2014 (2019).CrossRefGoogle Scholar
Hu, L., Yan, J., Wang, C., Chai, B., and Li, J.: Direct electrospinning method for the construction of z-scheme TiO2/g-C3N4/RGO ternary heterojunction photocatalysts with remarkably ameliorated photocatalytic performance. Chin. J. Catal. 40, 458 (2019).CrossRefGoogle Scholar
Pastrana-Martínez, L.M., Morales-Torres, S., Likodimos, V., Figueiredo, J.L., Faria, J.L., Falaras, P., and Silva, A.M.T.: Advanced nanostructured photocatalysts based on reduced graphene oxide–TiO2 composites for degradation of diphenhydramine pharmaceutical and methyl orange dye. Appl. Catal., B 123–124, 241 (2012).CrossRefGoogle Scholar
Sher Shah, M.S.A., Park, A.R., Zhang, K., Park, J.H., and Yoo, P.J.: Green synthesis of biphasic TiO2–reduced graphene oxide nanocomposites with highly enhanced photocatalytic activity. ACS Appl. Mater. Interfaces 4, 3893 (2012).CrossRefGoogle Scholar
Gupta, B., Kumar, N., Panda, K., Kanan, V., Joshi, S., and Visoly-Fisher, I.: Role of oxygen functional groups in reduced graphene oxide for lubrication. Sci. Rep. 7, 45030 (2017).CrossRefGoogle ScholarPubMed
Pei, S. and Cheng, H.M.: The reduction of graphene oxide. Carbon 50, 3210 (2012).CrossRefGoogle Scholar
Gonçalves, B.S., Palhares, H.G., de Souza, T.C.C., de Castro, V.G., Silva, G.G., Houmard, M., and Nunes, E.H.M.: Effect of the carbon loading on the structural and photocatalytic properties of reduced graphene oxide–TiO2 nanocomposites prepared by hydrothermal synthesis. J. Mater. Res. Technol. doi:10.1016/j.jmrt.2019.10.020.CrossRefGoogle Scholar
Wiranwetchayan, O., Promnopas, S., Thongtem, T., Chaipanich, A., and Thongtem, S.: Effect of alcohol solvents on TiO2 films prepared by sol–gel method. Surf. Coat. Technol. 326, 310 (2017).CrossRefGoogle Scholar
Nasrollahzadeh, M., Sajadi, S.M., Rostami-Vartooni, A., and Khalaj, M.: Natrolite zeolite supported copper nanoparticles as an efficient heterogeneous catalyst for the 1,3-diploar cycloaddition and cyanation of aryl iodides under ligand-free conditions. J. Colloid Interface Sci. 453, 237 (2015).CrossRefGoogle ScholarPubMed
Zhu, Y., Liu, T., and Ding, C.: Structural characterization of TiO2 ultrafine particles. J. Mater. Res. 14, 442 (1999).CrossRefGoogle Scholar
Song, P., Zhang, X.Y., Sun, M.X., Cui, X.L., and Lin, Y.H.: Graphene oxide modified TiO2 nanotube arrays: Enhanced visible light photoelectrochemical properties. Nanoscale 4, 1800 (2012).CrossRefGoogle ScholarPubMed
Lucchese, M.M., Stavale, F., Ferreira, E.H.M., Vilani, C., Moutinho, M.V.O., Capaz, R.B., Achete, C.A., and Jorio, A.: Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 48, 1592 (2010).CrossRefGoogle Scholar
Zhang, Y., Zhang, N., Tang, Z.R., and Xu, Y.J.: Improving the photocatalytic performance of graphene–TiO2 nanocomposites via a combined strategy of decreasing defects of graphene and increasing interfacial contact. Phys. Chem. Chem. Phys. 14, 9167 (2012).CrossRefGoogle Scholar
Liang, D., Cui, C., Hub, H., Wang, Y., Xu, S., Ying, B., Li, P., Lu, B., and Shen, H.: One-step hydrothermal synthesis of anatase TiO2/reduced graphene oxide nanocomposites with enhanced photocatalytic activity. J. Alloys Compd. 582, 236 (2014).CrossRefGoogle Scholar
Sing, K.S.W.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 54, 2201 (1982).CrossRefGoogle Scholar
Castro, V.G., Neves, J.C., Pereira, N.M., Assis, A.L.S., Montoro, L.A., and Silva, G.G.: BR Patent No. 102016005632-2 A2, 2017.Google Scholar
Tancredi, P., Moscoso Londoño, O., Rivas Rojas, P.C., Knobel, M., and Socolovsky, L.M.: Step-by-step synthesis of iron-oxide nanoparticles attached to graphene oxide: A study on the composite properties and architecture. Mater. Res. Bull. 107, 255 (2018).CrossRefGoogle Scholar
López, R. and Gómez, R.: Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: A comparative study. J. Sol–Gel Sci. Technol. 61, 1 (2012).CrossRefGoogle Scholar
Gao, L. and Zhang, Q.: Effects of amorphous contents and particle size on the photocatalytic properties of TiO2 nanoparticles. Scr. Mater. 44, 1195 (2001).CrossRefGoogle Scholar
Kočí, K., Obalová, L., Matějová, L., Plachá, D., Lacný, Z., Jirkovský, J., and Šolcová, O.: Effect of TiO2 particle size on the photocatalytic reduction of CO2. Appl. Catal., B 89, 494 (2009).CrossRefGoogle Scholar
Monticone, S., Tufeu, R., Kanaev, A.V., Scolan, E., and Sanchez, C.: Quantum size effect in TiO2 nanoparticles: Does it exist? Appl. Surf. Sci. 162, 565 (2000).CrossRefGoogle Scholar
Lin, H., Huang, C.P., Li, W., Ni, C., Shah, S.I., and Tseng, Y.H.: Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Appl. Catal., B 68, 1 (2006).CrossRefGoogle Scholar
Lian, K.Y., Ji, Y.F., Li, X.F., Jin, M.X., Ding, D.J., and Luo, Y.: Big bandgap in highly reduced graphene oxides. J. Phys. Chem. C 117, 6049 (2013).CrossRefGoogle Scholar
Pan, X., Zhao, Y., Liu, S., Korzeniewski, C.L., Wang, S., and Fan, Z.: Comparing graphene–TiO2 nanowire and graphene–TiO2 nanoparticle composite photocatalysts. ACS Appl. Mater. Interfaces 4, 3944 (2012).CrossRefGoogle Scholar
Uddin, M.T., Rahman, M.A., Rukanuzzaman, M., and Islam, M.A.: A potential low cost adsorbent for the removal of cationic dyes from aqueous solutions. Appl. Water Sci. 7, 2831 (2017).CrossRefGoogle Scholar
Xu, F. and Na, P.: String and ball-like TiO2/rGO composites with high photo-catalysis degradation capability for methylene blue. Trans. Tianjin Univ. 24, 272 (2018).CrossRefGoogle Scholar
Ru, Y., Yang, L., Li, Y., Jiang, W., Li, Y., Luo, Y., Yang, L., Li, T., and Luo, S.: Photoelectrocatalytic reduction of CO2 on titania nanotube arrays modified by Pd and RGO. J. Mater. Sci. 53, 10351 (2018).CrossRefGoogle Scholar
Shao, P., Ren, Z., Tian, J., Gao, S., Luo, X., Shi, W., Yan, B., Li, J., and Cui, F.: Silica hydrogel-mediated dissolution-recrystallization strategy for synthesis of ultrathin α-Fe2O3 nanosheets with highly exposed (110) facets: A superior photocatalyst for degradation of bisphenol S. Chem. Eng. J. 323, 64 (2017).CrossRefGoogle Scholar
Konaka, R., Kasahara, E., Dunlap, W.C., Yamamoto, Y., Chien, K.C., and Inoue, M.: Irradiation of titanium dioxide generates both singlet oxygen and superoxide anion. Free Radical Biol. Med. 27, 294 (1999).CrossRefGoogle ScholarPubMed
Brustolon, M. and Giamello, E.: Electron Paramagnetic Resonance: A Practitioner’s Toolkit (John Wiley and Sons, Hoboken, 2008).Google Scholar
Zhu, J., Wang, Y., Liu, J., and Zhang, Y.: Facile one-pot synthesis of novel spherical zeolite-reduced graphene oxide composites for cationic dye adsorption. Ind. Eng. Chem. Res. 53, 13711 (2014).CrossRefGoogle Scholar
Kim, H., Kang, S.O., Park, S., and Park, H.S.: Adsorption isotherms and kinetics of cationic and anionic dyes on three-dimensional reduced graphene oxide macrostructure. J. Ind. Eng. Chem. 21, 1191 (2015).CrossRefGoogle Scholar
Loryuenyong, V., Angamnuaysiri, K., Sukcharoenpong, J., and Suwannasri, A.: Sol–gel derived mesoporous titania nanoparticles: Effects of calcination temperature and alcoholic solvent on the photocatalytic behavior. Ceram. Int. 38, 2233 (2012).CrossRefGoogle Scholar
Wang, F. and Zhang, K.: Reduced graphene oxide–TiO2 nanocomposite with high photocatalystic activity for the degradation of rhodamine B. J. Mol. Catal. A: Chem. 345, 101 (2011).CrossRefGoogle Scholar
Perera, S.D., Mariano, R.G., Vu, K., Nour, N., Seitz, O., Chabal, Y., and Balkus, K.J.: Hydrothermal synthesis of graphene–TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catal. 2, 949 (2012).CrossRefGoogle Scholar
Lv, T., Pan, L., Liu, X., Lu, T., Zhu, G., Sun, Z., and Sun, C.Q.: One-step synthesis of CdS–TiO2–chemically reduced graphene oxide composites via microwave-assisted reaction for visible-light photocatalytic degradation of methyl orange. Catal. Sci. Technol. 2, 754 (2012).CrossRefGoogle Scholar
Supplementary material: File

Gonçalves et al. supplementary material

Gonçalves et al. supplementary material

Download Gonçalves et al. supplementary material(File)
File 1.3 MB