Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T04:19:00.648Z Has data issue: false hasContentIssue false

Sol-gel synthesis of a nanoparticulate aluminosilicate precursor for homogeneous mullite ceramics

Published online by Cambridge University Press:  01 May 2006

Jarkko Leivo*
Affiliation:
Institute of Materials Science, Tampere University of Technology, 33101 Tampere, Finland
Mika Lindén
Affiliation:
Department of Physical Chemistry, Åbo Akademi, 20500 Åbo, Finland
Cilâine V. Teixeira
Affiliation:
Department of Physical Chemistry, Åbo Akademi, 20500 Åbo, Finland
Janne Puputti
Affiliation:
Department of Physical Chemistry, Åbo Akademi, 20500 Åbo, Finland
Jessica Rosenholm
Affiliation:
Department of Physical Chemistry, Åbo Akademi, 20500 Åbo, Finland
Erkki Levänen
Affiliation:
Institute of Materials Science, Tampere University of Technology, 33101 Tampere, Finland
Tapio A. Mäntylä
Affiliation:
Institute of Materials Science, Tampere University of Technology, 33101 Tampere, Finland
*
a) Address all correspondence to this author. e-mail: jarkko.leivo@millidyne.fi
Get access

Abstract

An amorphous nanoparticulate aluminosilicate 3/2-mullite precursor has been synthesized and carefully characterized. The sol contained 2-nm particles of Q3(3Al) silica species together with six-coordinated alumina, which suggested an allophane-like structure of the nanoparticles. The sol remained stable for years, and formed an easily redispersible physical gel upon solvent evaporation. The gel crystallized to mullite at temperatures below 1000 °C, without going through any intermediate spinel phase. Thus, the nanoparticulate precursor is regarded as a homogeneous high-purity mullite precursor with a high Si–O–Al bond density, which is useful in the preparation of various nanostructured Al-rich aluminosilicate materials. The sols and gels were characterized by small-angle x-ray scattering, dynamic light scattering, x-ray diffraction, 27Al and 29Si magic-angle spinning (MAS) nuclear magnetic resonance spectroscopy, and differential thermal analysis.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Schneider, H., Okada, K., Pask, J.: Mullite and Mullite Ceramics (Wiley, Chichester, UK, 1994), pp. 233245.Google Scholar
2.Nishio, T., Kijima, K., Kajiwara, K., Fujiki, Y.: The influence of preparation procedure in the mullite preparation by solution method to the mixing of Al and Si and the crystallization behavior. J. Ceram. Soc. Jpn Int. Ed. 102, 464 (1994).CrossRefGoogle Scholar
3.Nishio, T., Fujiki, Y.: Preparation of mullite fiber by sol-gel method. J. Ceram. Soc. Jpn Int. Ed. 99, 638 (1991).CrossRefGoogle Scholar
4.Okada, K., Yasohama, S., Hayashi, S., Yasumori, A.: Sol-gel synthesis of mullite long fibres from water solvent systems. J. Eur. Ceram. Soc. 18, 1879 (1998).CrossRefGoogle Scholar
5.Song, K.C.: Preparation of mullite fibers from aluminium isopropoxide-aluminium nitrate-tetraethylorthosilicate solutions by sol-gel method. Mater. Lett. 35, 290 (1998).CrossRefGoogle Scholar
6.Schmücker, M., Schneider, H.: Structural development of single phase (Type I) mullite gels. J. Sol-Gel Sci. Tech. 15, 191 (1999).CrossRefGoogle Scholar
7.MacKenzie, K.J.D., Meinhold, R.H., Patterson, J.E., Schneider, H., Schmücker, M., Voll, D.: Structural evolution in gel-derived mullite precursors. J. Eur. Ceram. Soc. 16, 1299 (1996).CrossRefGoogle Scholar
8.Schneider, H., Voll, D., Saruhan, B., Sanz, J., Schrader, G., Rüscher, C., Mosset, A.: Synthesis and structural characterization of non-crystalline mullite precursors. J. Non-Cryst. Solids 178, 262 (1994).CrossRefGoogle Scholar
9.Schneider, H., Saruhan, B., Voll, D., Merwin, L., Sebald, A.: Mullite precursor phases. J. Eur. Ceram. Soc. 11, 87 (1993).CrossRefGoogle Scholar
10.Farmer, V.C., Adams, M.J., Fraser, A.R., Palmieri, F.: Synthetic imogolite: Properties, synthesis, and possible applications. Clay Miner. 18, 459 (1983).CrossRefGoogle Scholar
11.Wada, S-I., Eto, A., Wada, K.: Synthetic allophane and imogolite. J. Soil Sci. 30, 347 (1979).CrossRefGoogle Scholar
12.Exley, C., Schneider, C., Doucet, F.J.: The reaction of aluminium with silicic acid in acidic solution: An important mechanism in controlling the biological availability of aluminium? Coord. Chem. Rev. 228, 127 (2002).CrossRefGoogle Scholar
13.Wilson, M.A., Lee, G.S.H., Taylor, R.C.: Tetrahedral rehydration during imogolite formation. J. Non-Cryst. Solids 296, 172 (2001).CrossRefGoogle Scholar
14.Sinkó, K., Mezei, R.: Preparation effects on sol-gel aluminosilicate gels. J. Non-Cryst. Solids 231, 1 (1998).CrossRefGoogle Scholar
15.Okada, K., Aoki, C., Ban, T., Hayashi, S., Yasumori, A.: Effect of aging temperature on the structure of mullite precursor prepared from tetraethoxysilane and aluminium nitrate in ethanol solution. J. Eur. Ceram. Soc. 16, 149 (1996).CrossRefGoogle Scholar
16.Jaymes, I., Douy, A.: New aqueous mullite precursor synthesis. Structural study by 27Al and 29Si NMR Spectroscopy. J. Eur. Ceram. Soc. 16, 155 (1996).CrossRefGoogle Scholar
17.Jaymes, I.: Physico-chemical characterization of silicate powders synthesized by new sol-gel routes: Mullite. (University of Orleans, Orleans, France, 1995), pp. 3545.Google Scholar
18.Jaymes, I., Douy, A., Massiot, D., Coutures, J.P.: Characterization of mono- and diphasic mullite precursor powders prepared by aqueous routes. 27Al and 29Si MAS-NMR spectroscopy investigations. J. Mater. Sci. 31, 4581 (1996).CrossRefGoogle Scholar
19.Ban, T., Hayashi, S., Yasumori, A., Okada, K.: Characterization of low temperature mullitization. J. Eur. Ceram. Soc. 16, 127 (1996).CrossRefGoogle Scholar
20.Henmi, T., Huang, P.M.: Removal of phosphorus by poorly ordered clays as influenced by heating and grinding. Appl. Clay Sci. 1, 133 (1985).CrossRefGoogle Scholar
21.Huang, T.C., Toraya, H., Blanton, T.N., Wu, Y.J.: X-ray powder diffraction analysis of silver behenate, a possible low-angle diffraction standard. J. Appl. Crystallogr. 26, 180 (1993).CrossRefGoogle Scholar
22.Brinker, C.J., Scherer, G.W.: Sol-Gel Science (Academic Press, San Diego, CA, 1990), pp. 107, 258.Google Scholar
23.Guinier, A.: Small-angle x-ray diffraction: Application for the study of ultramicroscopical phenomena. Ann. Phys. 12, 161 (1939).CrossRefGoogle Scholar
24.Mittelbach, P.: On the small-angle X-ray scattering from dilute colloidal systems. VIII. Discussion about the scattering properties of uniform bodies and methods for determination of size and shape of colloidal particles. Acta Phys. Austriaca 19, 53 (1964).Google Scholar
25.McManus, J., Ashbrook, S.E., MacKenzie, K.J.D., Wimpiris, S.: 27Al multiple-quantum MAS and 27Al{1H} CPMAS NMR study of amorphous aluminosilicates. J. Non-Cryst. Solids 282, 278 (2001).CrossRefGoogle Scholar
26.Schmücker, M., Schneider, H.: A new approach on the coordination of Al in non-crystalline gels and glasses of the system Al2O3–SiO2. Ber. Bunsenges. Phys. Chem. 100, 1550 (1996).CrossRefGoogle Scholar
27.Barron, P.F., Wilson, M.A., Campbell, A.S., Frost, R.L.: Detection of imogolite in soils using solid state 29Si NMR. Nature 299, 616 (1982).CrossRefGoogle Scholar
28.Goodman, B.A., Russell, J.D., Montez, B., Oldfield, E., Kirkpatrick, R.J.: Structural studies of imogolite and allophanes by aluminum-27 and silicon-29 nuclear magnetic resonance spectroscopy. Phys. Chem. Miner. 12, 342 (1985).CrossRefGoogle Scholar
29.MacKenzie, K.J.D., Bowden, M.E., Meinhold, R.H.: The structure and thermal transformations of allophanes studied by 29Si and 27Al high resolution solid-state NMR. Clays Clay Miner. 39, 337 (1991).CrossRefGoogle Scholar
30.MacKenzie, K.J.D., Bowden, M.E., Brown, I.W.M., Meinhold, and R.H.: Structure and thermal transformations of imogolite studied by 29Si and 27Al high resolution solid-state nuclear magnetic resonance. Clays Clay Miner. 37, 317 (1989).CrossRefGoogle Scholar
31.Hu, J., Kannangara, G.S. Kamali, Wilson, M.A., Reddy, N.: The fused silicate route to protoimogolite and imogolite. J. Non-Cryst. Solids 347, 244 (2004).CrossRefGoogle Scholar
32.Tkalcec, E., Hoebbel, D., Nass, R., Schmidt, H.: Structural changes of mullite precursors in presence of polyethyleneimine. J. Non-Cryst. Solids 243, 233 (1999).CrossRefGoogle Scholar
33.Li, D.X., Thomson, W.J.: Tetragonal to orthorombic transformation during mullite formation. J. Mater. Res. 6, 819 (1991).CrossRefGoogle Scholar
34.Johnson, B.R., Kriven, W.M., Schneider, J.: Crystal structure development during devitrification of quenched mullite. J. Eur. Ceram. Soc. 21, 2541 (2001).CrossRefGoogle Scholar
35.Tkalcec, E., Kurajica, S., Ivankovic, H.: Diphasic aluminosilicate gels with two stage mullitization in temperature range of 1200-1300°C. J. Eur. Ceram. Soc. 25, 613 (2005).CrossRefGoogle Scholar
36.Takei, T., Kameshima, Y., Yasumori, A., Okada, K.: Crystallization kinetics of mullite in alumina-silica glass fibers. J. Am. Ceram. Soc. 82, 2876 (1999).CrossRefGoogle Scholar
37.Takei, T., Kameshima, Y., Yasumori, A., Okada, K.: Crystallization kinetics of mullite from Al2O3–SiO2 glasses under non-isothermal conditions. J. Eur. Ceram. Soc. 21, 2487 (2001).CrossRefGoogle Scholar
38.Galakhov, F.Ya., Konovalova, S.F.: Liquation phenomena in the system alumina-silica. Communication 1. Experimental data and their discussion. Izv. Akad. Nauk SSSR. Ser. Khim. 8, 1373 (1964).Google Scholar
39.MacDowell, J.F., Beall, G.H.: Immiscibility and crystallization in alumina-silica glasses. J. Am. Ceram. Soc. 52, 17 (1969).CrossRefGoogle Scholar
40.Risbud, S.H., Pask, J.A.: Calculated thermodynamic data and metastable immiscibility in the system silica-alumina. J. Am. Ceram. Soc. 60, 418 (1977).CrossRefGoogle Scholar
41.Ban, T., Hayashi, S., Yasumori, A., Okada, K.: Calculation of metastable immiscibility region in the Al2O3–SiO2 system. J. Mater. Res. 11, 1421 (1996).CrossRefGoogle Scholar
42.Tkalcec, E., Nass, R., Schmauch, J., Schmidt, H., Kurajica, S., Bezjak, A., Ivankovic, H.: Crystallization kinetics of mullite from single-phase gel determined by isothermal differential scanning calorimetry. J. Non-Cryst. Solids 223, 57 (1998).CrossRefGoogle Scholar
43.de Sola, E.R., Estevan, F., Torres, F.J., Alarcón, J.: Effect of thermal treatment on the structural evolution of 3:2 and 2:1 mullite monophasic gels. J. Non-Cryst. Solids 351, 1202 (2005).CrossRefGoogle Scholar
44.Huling, J.C., Messing, G.L.: Chemistry-crystallization relations in molecular mullite gels. J. Non-Cryst. Solids 147(148), 213 (1992).CrossRefGoogle Scholar