Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-25T22:44:42.221Z Has data issue: false hasContentIssue false

Size-dependent lattice parameters of microstructure-controlled Sn nanowires

Published online by Cambridge University Press:  29 July 2011

Ho Sun Shin
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
Jin Yu
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
Jae Yong Song*
Affiliation:
Division of Industrial Metrology, Korea Research Institute of Standards and Science, Daejeon 305-340, Republic of Korea; and University of Science and Technology, Daejeon 305-333, Republic of Korea
Hyun Min Park
Affiliation:
Division of Industrial Metrology, Korea Research Institute of Standards and Science, Daejeon 305-340, Republic of Korea; and University of Science and Technology, Daejeon 305-333, Republic of Korea
*
a)Address all correspondence to this author. e-mail: jysong@kriss.re.kr
Get access

Abstract

The size dependence of the lattice parameter of nanosolids has extensively been studied because lattice strain engineering is important in controlling the physical properties of nanowires (NWs), such as band gap, carrier transport, mechanical strength, etc. We have investigated the size-dependent lattice behavior of microstructure-controlled Sn NWs with radii of 7–35 nm. The NW microstructures were controlled as single-crystal, granular, and bamboo structures in the longitudinal direction. Results showed that the a-axis lattice parameter in the [100]-longitudinal direction of NWs can be controlled within 1% by varying the wire microstructure for the same wire radius because it is strongly dependent on the microstructure and the wire radius. Moreover, as the randomness of the grain orientation in the microstructure-controlled NWs increases, by which the anisotropy of surface stress is effectively reduced, the lattice strain of the NW can be compressive or tensile as a function of the wire radius. The longitudinal lattice parameters of microstructure-controlled Sn NWs can be tailored by reducing the effective anisotropy of surface stresses under a dimension confinement in the nanometer scale.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tang, Y. and Ouyang, M.: Tailoring properties and functionalities of metal nanoparticles through crystallinity engineering. Nat. Mater. 6, 754 (2007).CrossRefGoogle ScholarPubMed
2.Duan, C.G., Sabiryanov, R.F., Liu, J., and Mei, W.N.: Strain induced half-metal to semiconductor transition in GdN. Phys. Rev. Lett. 94, 237201 (2005).CrossRefGoogle ScholarPubMed
3.Kang, C.Y., Choi, R., Hussain, M.M., Wang, J., Suh, Y.J., Floresca, H.C., Kim, M.J., Kim, J., Lee, B.H., and Jammy, R.: Effects of metal gate-induced strain on the performance of metal-oxide-semiconductor field effect transistors with titanium nitride gate electrode and hafnium oxide dielectric. Appl. Phys. Lett. 91, 033511 (2007).CrossRefGoogle Scholar
4.Needs, R.J.: Calculations of the surface stress tensor at aluminum (111) and (110) surfaces. Phys. Rev. Lett. 58, 53 (1987).CrossRefGoogle Scholar
5.Smoluchowski, R.: Anisotropy of the electronic work function of metals. Phys. Rev. 60, 661 (1941).CrossRefGoogle Scholar
6.Pauling, L.: Atomic radii and interatomic distances in metals. J. Am. Chem. Soc. 69, 542 (1947).CrossRefGoogle Scholar
7.Diao, J., Gall, K., and Dunn, M.L.: Surface-stress-induced phase transformation in metal nanowires. Nat. Mater. 2, 656 (2003).CrossRefGoogle ScholarPubMed
8.Park, H.S.: Stress-induced martensitic phase transformation in intermetallic nickel aluminum nanowires. Nano Lett. 6, 958 (2006).CrossRefGoogle Scholar
9.Sun, C.Q.: Size dependence of nanostructures: Impact of bond order deficiency. Prog. Solid State Chem. 35, 1 (2007).CrossRefGoogle Scholar
10.Liang, L.H., Li, J.C., and Jiang, Q.: Size-dependent melting depression and lattice contraction of Bi nanocrystals. Physica B 334, 49 (2003).CrossRefGoogle Scholar
11.Zhang, J.Y., Wang, X.Y., Xiao, M., Qu, L., and Peng, X.: Lattice contraction in free-standing CdSe nanocrystals. Appl. Phys. Lett. 81, 2076 (2002).CrossRefGoogle Scholar
12.Huang, W.J., Sun, R., Tao, J., Menard, L.D., Nuzzo, R.G., and Zuo, J.M.: Coordination-dependent surface atomic contraction in nanocrystals revealed by coherent diffraction. Nat. Mater. 7, 308 (2008).CrossRefGoogle ScholarPubMed
13.Eymery, J., Favre-Nicolin, V., Fröberg, L., and Samuelson, L.: X-ray measurements of the strain and shape of dielectric/metallic wrap-gated InAs nanowires. Appl. Phys. Lett. 94, 131911 (2009).CrossRefGoogle Scholar
14.Yu, X.R., Liu, X., Zhang, K., and Hu, Z.Q.: The lattice contraction of nanometre-sized Sn and Bi particles produced by an electrohydrodynamic technique. J. Phys. Condens. Matter 11, 937 (1999).CrossRefGoogle Scholar
15.Shenoy, V.B.: Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys. Rev. B 71, 094104 (2005).CrossRefGoogle Scholar
16.Lamber, R., Wetjen, S., and Jaeger, N.I.: Size-dependence of the lattice parameter of small palladium particles. Phys. Rev. B 51, 10968 (1995).CrossRefGoogle ScholarPubMed
17.Jiang, Q., Liang, L.H., and Zhao, D.S.: Lattice contraction and surface stress of fcc nanocrystals. J. Phys. Chem. B 105, 6275 (2001).CrossRefGoogle Scholar
18.Birringer, R., Hoffmann, M., and Zimmer, P.: Interface stress in polycrystalline materials: The case of nanocrystalline Pd. Phys. Rev. Lett. 88, 206104 (2002).CrossRefGoogle ScholarPubMed
19.Banerjee, R., Sperling, E.A., Thompson, G.B., Fraser, H.L., Bose, S., and Ayyub, P.: Lattice expansion in nanocrystalline niobium thin films. Appl. Phys. Lett. 82, 4250 (2003).CrossRefGoogle Scholar
20.Shin, H.S., Yu, J., Song, J.Y., and Park, H.M.: Size dependence of lattice deformation induced by growth stress in Sn nanowires. Appl. Phys. Lett. 94, 011906 (2009).CrossRefGoogle Scholar
21.Kim, Y-S., Song, J.Y., and Lee, S.M.: Surface-stress-induced elongation of β-Sn metal nanowires: A density-functional study. Appl. Surf. Sci. 256, 3603 (2010).CrossRefGoogle Scholar
22.Shin, H.S., Yu, J., Song, J.Y., and Kim, Y-S.: Origins of size-dependent lattice dilatation in tetragonal Sn nanowires: Surface stress and growth stress. Appl. Phys. Lett. 97, 131903 (2010).CrossRefGoogle Scholar
23.Djenizian, T., Hanzu, I., Premchand, Y.D., Vacandio, F., and Knauth, P.: Electrochemical fabrication of Sn nanowires on titania nanotubes guide layers. Nanotechnology 19, 205601 (2008).CrossRefGoogle ScholarPubMed
24.Tian, M., Wang, J., Kurtz, J., Liu, Y., Chen, M.H.W., Mayer, T.S., and Mallouk, T.E.: Dissipation in quasi-one-dimensional superconducting single-crystal Sn nanowires. Phys. Rev. B 71, 104521 (2005).CrossRefGoogle Scholar
25.Shin, H.S., Yu, J., and Song, J.Y.: Size-dependent thermal instability and melting behavior of Sn nanowires. Appl. Phys. Lett. 91, 173106 (2007).CrossRefGoogle Scholar
26.Luo, B., Yang, D., Liang, M., and Zhi, L.: Large-scale fabrication of single crystalline tin nanowire arrays. Nanoscale 2, 1661 (2010).CrossRefGoogle ScholarPubMed
27.Pushpa, R., Waghmare, U., and Narasimhan, S.: Bond stiffening in small nanoclusters and its consequences for mechanical and thermal properties. Phys. Rev. B 77, 045427 (2008).CrossRefGoogle Scholar
28.Chen, C.Q., Shi, Y., Zhang, Y.S., Zhu, J., and Yan, Y.J.: Size dependence of Young’s modulus in ZnO nanowires. Phys. Rev. Lett. 96, 075505 (2006).CrossRefGoogle ScholarPubMed
29.Wen, Y., Zhang, Y., and Zhu, Z.: Size-dependent effects on equilibrium stress and strain in nickel nanowires. Phys. Rev. B 76, 125423 (2007).CrossRefGoogle Scholar
30.Feibelman, P.J.: Anisotropy of the stress on fcc(110) surfaces. Phys. Rev. B 51, 17867 (1996).CrossRefGoogle Scholar