Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T04:05:44.709Z Has data issue: false hasContentIssue false

Size effects on the nanomechanical properties of cellulose I nanocrystals

Published online by Cambridge University Press:  23 September 2011

Anahita Pakzad
Affiliation:
Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, Michigan 49931
John Simonsen
Affiliation:
College of Forestry, Oregon State University, Corvallis, Oregon 97331
Patricia A. Heiden
Affiliation:
Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931
Reza S. Yassar*
Affiliation:
Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, Michigan 49931
*
a)Address all correspondence to this author. e-mail: reza@mtu.edu
Get access

Abstract

The ultimate properties of a fibrous composite system depend highly on the transverse mechanical properties of the fibers. Here, we report the size dependency of transverse elastic modulus in cellulose nanocrystals (CNCs). In addition, the mechanical properties of CNCs prepared from wood and cotton resources were investigated. Nanoindentation in an atomic force microscope (AFM) was used in combination with analytical contact mechanics modeling (Hertz model) and finite element analysis (FEA) to estimate the transverse elastic moduli (Et) of CNCs. FEA modeling estimated the results more accurately than the Hertz model. Based on the AFM–FEA calculations, wood CNCs had higher transverse elastic moduli in comparison to the cotton CNCs. Additionally, Et was shown to increase with a reduction in the CNCs’ diameter. This size-scale effect was related to the Iα/Iβ ratio and crystalline structure of CNCs.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Beck-Candanedo, S., Roman, M., and Gray, D.G.: Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6, 1048 (2005).CrossRefGoogle ScholarPubMed
2.Bondeson, D., Mathew, A., and Oksman, K.: Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13, 171 (2006).CrossRefGoogle Scholar
3.Turbark, A., Snyder, F., and Sandberg, K.: Microfibrillated cellulose, a new cellulose product: Properties, uses and commercial potential. J. Appl. Polym. Sci. 37, 815 (1983).Google Scholar
4.Taniguchi, T. and Okamura, K.: New films produced from microfibrillated natural fibres. Polym. Int. 47, 291 (1998).Google Scholar
5.Zimmermann, T., Pöhler, E., and Geiger, T.: Cellulose fibrils for polymer reinforcement. Adv. Eng. Mater. 6, 754 (2004).Google Scholar
6.Azizi Samir, M., Alloin, F., and Dufresne, A.: Review of recent research into cellulosic whiskers, their properties and their applications in nanocomposite field. Biomacromolecules 6, 612 (2005).Google Scholar
7.Favier, V., Chanzy, H., and Cavaille, J.Y.: Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28, 6365 (1995).CrossRefGoogle Scholar
8.Auad, M.L., Contos, V.S., Nutt, S., Aranguran, M., and Marcovich, N.E.: Characterization of nanocellulose reinforced shape memory polyurethanes. Polym. Int. 57, 651 (2008).Google Scholar
9.Cao, X., Dong, H., and Li, C.M.: New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Biomacromolecules 8, 899 (2007).CrossRefGoogle ScholarPubMed
10.Kvien, I., Sugiyama, J., Votrubec, M., and Oksman, K.: Characterization of starch based nanocomposites. J. Mater. Sci. 42, 8163 (2007).CrossRefGoogle Scholar
11.Lapa, V.L.C., Suarez, J.C.M., Visconte, L.L.Y., and Nunes, R.C.R.: Fracture behavior of nitrile rubber-cellulose II nanocomposites. J. Mater. Sci. 42, 9934 (2007).CrossRefGoogle Scholar
12.Liu, H. and Brinson, L.C.: Reinforcing efficiency of nanoparticles: A simple comparison for polymer nanocomposites. Compos. Sci. Technol. 68, 1502 (2008).CrossRefGoogle Scholar
13.Long, D. and Lequeux, F.: Heterogeneous dynamics at the glass transition in van der Waals liquids, in the bulk and in thin films. Eur. Phys. J. E 4, 371 (2001).CrossRefGoogle Scholar
14.Meyer, K.H. and Lotmar, W.: On the elasticity of the cellulose. (On the constitution of the partially crystallized cellulose IV). Helv. Chim. Acta 19, 68 (1936).CrossRefGoogle Scholar
15.Sakurada, I., Nukushina, Y., and Ito, T.: Experimental determination of the elastic modulus of the crystalline regions in oriented polymers. J. Polym. Sci. 57, 651 (1962).Google Scholar
16.Sakurada, I., Ito, T., and Nakamae, K.: Elastic moduli of polymer crystals for the chain axial direction. Macromol. Chem. Phys. 75, 1 (1964).CrossRefGoogle Scholar
17.Jaswon, A., Gillis, P.P., and Mark, R.E.: The elastic constants of crystalline native cellulose. Proc. R. Soc. London, Ser. A 306, 389 (1968).Google Scholar
18.Tashiro, K. and Kobayashi, M.: Calculation of crystallite modulus of native cellulose. Polym. Bull. 14, 213 (1985).CrossRefGoogle Scholar
19.Kroon-Batenburg, L.M.J., Kroon, J., and Northolt, M.G.: Chain modulus and intramolecular hydrogen bonding in native and regenerated cellulose fibres. Polym. Commun. 27, 290 (1986).Google Scholar
20.Matsuo, M., Sawatari, C., Iwai, Y., and Ozaki, F.: Effect of orientation distribution and crystallinity on the measurements by x-ray diffraction of the crystal lattice moduli of cellulose I and II. Macromolecules 23, 3266 (1990).CrossRefGoogle Scholar
21.Tashiro, K. and Kobayashi, M.: Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: Role of hydrogen bonds. Polymer 32, 1516 (1991).CrossRefGoogle Scholar
22.Nishino, T., Takano, K., and Nakamae, K.: Elastic modulus of the crystalline regions of cellulose polymorphs. J. Polym. Sci. 33, 1647 (1995).Google Scholar
23.Guhados, G., Wan, W., and Hutter, J.L.: Measurement of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21, 6642 (2005).CrossRefGoogle ScholarPubMed
24.Tanaka, F. and Iwata, T.: Estimation of the elastic modulus of cellulose crystal by molecular mechanics simulation. Cellulose 13, 509 (2006).Google Scholar
25.Cheng, Q. and Wang, S.: A method for testing the elastic modulus of single cellulose fibrils via atomic force microscopy. Composites 39, 1838 (2008).CrossRefGoogle Scholar
26.Iwamoto, S., Kai, W., Isogai, A., and Iwata, T.: Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10, 2571 (2009).Google Scholar
27.Lahiji, R.R., Xu, X., Reifenberger, R., Raman, A., Rudie, A., and Moon, R.J.: Atomic force microscopy characterization of cellulose nanocrystals. Langmuir 26, 4480 (2010).Google Scholar
28.Lyons, W.J.: Theoretical value of the dynamic stretch modulus of cellulose. J. Appl. Phys. 30, 796 (1959).CrossRefGoogle Scholar
29.Mann, J. and Roldan-Gonzalez, L.: X-ray measurements of the elastic modulus of cellulose crystals. Polymer 3, 549 (1962).Google Scholar
30.Treloar, L.R.G.: Calculation of elastic moduli of polymer crystals: III. Cell. Polym. 1, 290 (1960).Google Scholar
31.Pittenger, B., Erina, N., and Chanmin, S.: Quantitative mechanical mapping at nanoscale with peak force QNM, in Bruker Application Note (2009).Google Scholar
32.Derjaguin, B.V., Muller, V.M., and Toropov, Yu.P.: Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53, 314 (1975).Google Scholar
33.Ohler, B.: Practical advice on determination of cantilever spring constants, in Bruker Application Note (2009).Google Scholar
34.Hertz, H.: On the contact of rigid elastic solids. J. Reine Angew. Math. 92, 156 (1882).Google Scholar
35.Johnson, K.L., Kendall, K., and Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. London, Ser. A 324, 301 (1971).Google Scholar
36.Domke, J. and Radmacher, M.: Measuring the elastic properties of thin polymer films with the atomic force microscope. Langmuir 14, 3320 (1998).Google Scholar
37.Tan, S., Sherman, R.L. Jr., and Ford, W.T.: Nanoscale compression of polymer microspheres by atomic force microscopy. Langmuir 20, 7015 (2004).CrossRefGoogle ScholarPubMed
38.Palaci, I., Fedrigo, S., Brune, H., Klinke, C., Chen, M., and Riedo, E.: Radial elasticity of multiwalled carbon nanotubes. Phys. Rev. Lett. 94, 175502 (2005).Google Scholar
39.Zhao, Y., Ge, Z., and Fang, J.: Elastic modulus of viral nanotubes. Phys. Rev. E: Stat. Nonlinear Soft Matter Phys. 78, 031914 (2008).CrossRefGoogle ScholarPubMed
40.Chizhik, S.A., Huang, Z., Gorbunov, V.V., Myshkin, N.K., and Tsukruk, V.V.: Micromechanical properties of elastic polymeric materials as probed by scanning force microscopy. Langmuir 14, 2606 (1998).Google Scholar
41.Tsukruk, V.V., Huang, A., Chizhik, S.A., and Gorbunov, V.V.: Probing of micromechanical properties of compliant polymeric materials. J. Mater. Sci. 33, 4905 (1998).Google Scholar
42.Feng, G., Yoon, Y., and Lee, C.J.: A study of the mechanical properties of nonowires using nanoindentation. J. Appl. Phys. 99, 074304 (2006).CrossRefGoogle Scholar
43.Tranchida, D., Piccarolo, S., and Soliman, M.: Nanoscale mechanical characterization of polymers by AFM nanoindentation: Critical approach to elastic characterization. Macromolecules 39, 4547 (2006).CrossRefGoogle Scholar
44.Habibi, Y., Lucia, L.A., and Rojas, O.J.: Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chem. Rev. 110, 3479 (2010).CrossRefGoogle ScholarPubMed
45.Battista, O.A., Coppick, S., Howsmon, J.A., Morehead, F.F., and Sisson, W.A.: Level-off degree of polymerization. Ind. Eng. Chem. Res. 48, 333 (1956).Google Scholar
46.Yachi, T., Hayashi, J., Takai, M., and Shimizu, Y.: Supermolecular structure of cellulose: Stepwise decrease in LODP and particle size of cellulose hydrolyzed after chemical treatment. J. Appl. Polym. Sci. 37, 325 (1983).Google Scholar
47.McNeil, L.E. and Grimsditch, M.: Elastic moduli of muscovite mica. J. Phys. Condens. Matter 5, 1681 (1993).CrossRefGoogle Scholar
48.Ioelovich, M., Leykin, A., and Fogovsky, O.: Study of cellulose paracrystallinity. Bioresources 5, 1393 (2010).CrossRefGoogle Scholar
49.Harris, B.: Engineering Composite Materials (IOM Communications Ltd., London, 1999).Google Scholar
50.Eichhorn, S.J. and Young, R.J.: The Young’s modulus of a microcrystalline cellulose. Cellulose 8, 197 (2001).Google Scholar
51.Atalla, R.H. and VanderHart, D.: Native cellulose: A composite of two distinct crystalline forms. Science 223, 283 (1984).CrossRefGoogle ScholarPubMed
52.Roman, M. and Winter, W.T.: Cellulose nanocrystals: from discovery to application, in Proceedings of International Conference on Nanotechnology, Atlanta, Georgia, April 26-28 (2006).Google Scholar
53.Nishiyama, Y., Sugiyama, J., Chanzy, H., and Langan, P.: Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron x-ray and neutron fiber diffraction. J. Am. Chem. Soc. 125, 14300 (2003).Google Scholar
54.Aabloo, A. and French, A.D.: Preliminary potential energy calculations of cellulose Iα crystal structure. Macromol. Theory Simul. 3, 185 (1994).Google Scholar
55.Nishiyama, Y., Langan, P., and Chanzy, H.: Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron x-ray and neutron fiber diffraction. J. Am. Chem. Soc. 124, 9074 (2002).CrossRefGoogle ScholarPubMed
56.Finkenstadt, V.L. and Millane, R.P.: Crystal structure of Valonia cellulose Iβ. Macromolecules 31, 7776 (1998).Google Scholar
57.Kovalenko, V.I.: Crystalline cellulose: structure and hydrogen bonds. Russ. Chem. Rev. 79, 231 (2010).CrossRefGoogle Scholar
58.Baker, A.A., Helbert, W., Sugiyama, J., and Miles, M.J.: New insight into cellulose structure by atomic force microscopy shows the Iα crystals phase at near-atomic resolution. Biophys. J. 79, 1139 (2000).Google Scholar
59.Malm, E., Bulone, V., Wickholm, K., Larsson, P.T., and Iversen, T.: The surface structure of well-ordered native cellulose fibrils in contact with water. Carbohydr. Res. 345, 97 (2010).Google Scholar
60.Zheng, X., Cao, Y., Li, B., Feng, Z., and Wang, G.: Surface effects in various bending-based test methods for measuring the elastic properties of nanowires. Nanotechnology 21, 205702 (2010).CrossRefGoogle ScholarPubMed
61.Battista, O.A.: Microcrystal Polymer Science (McGraw-Hill, New York, 1975).Google Scholar
62.Fleming, K., Gray, D., Prasannan, S., and Matthews, S.: Cellulose crystallites: A new and robust liquid crystalline medium for the measurement of residual dipolar couplings. J. Am. Chem. Soc. 122, 5224 (2000).CrossRefGoogle Scholar
63.Habibi, Y., Goffin, A.L., Schiltz, N., Duquesne, E., Dubois, P., and Dufresne, A.: Bionanocomposites based on poly(E-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J. Mater. Chem. 18, 5002 (2008).Google Scholar
64.Tan, E.P.S. and Lim, C.T.: Physical properties of single polymeric nanofibers. Appl. Phys. Lett. 84, 1603 (2004).CrossRefGoogle Scholar
65.Shin, M.K., Kim, S.I., and Kim, S.J.: Size-dependent elastic modulus of single electroactive polymer nanofibers. Appl. Phys. Lett. 89, 231929 (2006).Google Scholar
66.Curgul, S., VanVliet, K.J., and Rutledge, G.C.: Molecular dynamics simulation of size dependent structural and thermal properties of polymer nanofibers. Macromolecules 40, 8483 (2007).Google Scholar
67.Sun, L., Han, R.P.S., Wang, J., and Lim, C.T.: Modeling the size-dependent elastic properties of polymeric nanofibers. Nanotechnology 19, 455906 (2008).Google Scholar
68.Khatiwala, C.B., Peyton, S.R., and Putnam, A.J.: Intrinsic mechanical properties of the extracellular matrix affect the behavior of pre-osteoblastic MC3T3-E1 cells. Am. J. Physiol. Cell Physiol. 290, 1640 (2006).CrossRefGoogle ScholarPubMed