Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T02:47:16.992Z Has data issue: false hasContentIssue false

SiC-bonded diamond materials produced by pressureless silicon infiltration

Published online by Cambridge University Press:  19 June 2017

Björn Matthey*
Affiliation:
Fraunhofer IKTS, Fraunhofer Institute for Ceramic Technologies and Systems, Dresden 01277, Germany
Steffen Kunze
Affiliation:
Fraunhofer IKTS, Fraunhofer Institute for Ceramic Technologies and Systems, Dresden 01277, Germany
Martin Hörner
Affiliation:
Fraunhofer IWM, Fraunhofer Institute for Mechanics of Materials, Freiburg im Breisgau 79108, Germany
Bernhard Blug
Affiliation:
Fraunhofer IWM, Fraunhofer Institute for Mechanics of Materials, Freiburg im Breisgau 79108, Germany
Maike van Geldern
Affiliation:
KSB Aktiengesellschaft, Pegnitz 91257, Germany
Alexander Michaelis
Affiliation:
Fraunhofer IKTS, Fraunhofer Institute for Ceramic Technologies and Systems, Dresden 01277, Germany
Mathias Herrmann
Affiliation:
Fraunhofer IKTS, Fraunhofer Institute for Ceramic Technologies and Systems, Dresden 01277, Germany
*
a) Address all correspondence to this author. e-mail: bjoern.matthey@ikts.fraunhofer.de
Get access

Abstract

Extremely hard, wear-resistant SiC-bonded diamond materials with diamond contents of approximately 45–60% by volume can be prepared by pressureless infiltration of shaped diamond compacts with silicon. Materials with diamond grain sizes in the range of 10–100 µm can be produced having a free silicon content of less than 5 vol%. Components with large dimensions can be prepared as graded or ungraded materials. Graded components are composed of silicon infiltrated SiC base material with diamond–SiC composite layers of 0.1 mm by dip coating technology to several mm in thickness by doubled die pressing in regions with high loading. This creates the possibility of producing low-cost, wear-resistant components of various geometries and dimensions with bending strengths of 400–500 MPa, hardness values of 48 GPa, and fracture toughness levels of 4.5–5 MPa m1/2 for use in extreme wear conditions. Thermal conductivities of up to 500 W/(m K) were obtained, render these materials interesting for heat sinks.

Type
Invited Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Nahum Travitzky

References

REFERENCES

Rödel, J., Kounga, A.B.N., Weissenberger-Eibl, M., Koch, D., Bierwisch, A., Rossner, W., Hoffmann, M.l.J., Danzer, R., and Schneider, G.: Development of a roadmap for advanced ceramics: 2010–2025. J. Eur. Ceram. Soc. 29, 15491560 (2009).CrossRefGoogle Scholar
Expertenstudie Zukunftspotentiale von Hochleistungskeramiken [Expert study on future potentials of high-performance ceramics]. Available at: https://www.ikts.fraunhofer.de/content/dam/ikts/startseite/downloads/expertenstudie_05_14.pdf (accessed 16 May 2017).Google Scholar
Haines, J., Leger, J.M., and Bocquillon, G.: Synthesis and design of superhard materials. Annu. Rev. Mater. Res. 31(1), 123 (2001).CrossRefGoogle Scholar
Voronin, G.A., Zerda, T.W., Gubicza, J., Ungar, T., and Dub, S.N.: Properties of nanostructured diamond-silicon carbide composites sintered by high pressure infiltration technique. J. Mater. Res. 19(9), 27032707 (2004).CrossRefGoogle Scholar
Ekimov, E.A., Gromnitskaya, E.L., Gierlotka, S., Lojkowski, W., Palosz, B., Swiderska-Sroda, A., Kozubowski, J.A., and Naletov, A.M.: Mechanical behavior and microstructure of nanodiamond-based composite materials. J. Mater. Sci. Lett. 21, 16991702 (2002).CrossRefGoogle Scholar
Ko, Y.S., Tsurumi, T., Fukunaga, O., and Yano, T.: High pressure sintering of diamond–SiC composites. J. Mater. Sci. 36, 469475 (2001).CrossRefGoogle Scholar
Shimono, M. and Kume, S.: HIP-sintered composites of C (diamond)/SiC. J. Am. Ceram. Soc. 87, 752755 (2004).CrossRefGoogle Scholar
Voronin, G.A., Zerda, T.W., Qian, J., Zhao, Y., He, D., and Dub, S.N.: Diamond–SiC nanocomposites sintered from a mixture of diamond and silicon nanopowders. Diamond Relat. Mater. 12, 14771481 (2003).CrossRefGoogle Scholar
Ekstrom, T.C. and Gordeev, S.K.: New carbide composites with extraordinary properties. Key Eng. Mater. 161, 7580 (1999).Google Scholar
Mlungwane, K., Herrmann, M., and Sigalas, I.: The low-pressure infiltration of diamond by silicon to form diamond–silicon carbide composites. J. Eur. Ceram. Soc. 28, 321326 (2008).CrossRefGoogle Scholar
Gordeev, S.K., Zhukov, S.G., Danchukova, L.V., and Ekström, T.: Method of manufacturing a diamond composite and a composite produced by same. U.S. Patent No. 6,709,747, 2004.Google Scholar
Herrmann, M., Matthey, B., Höhn, S., Kinski, I., Rafaja, D., and Michaelis, A.: Diamond–ceramics composites—New materials for a wide range of challenging applications. J. Eur. Ceram. Soc. 32, 19151923 (2012).CrossRefGoogle Scholar
Herrmann, M. and Martin, H.P.: Verfahren zur Herstellung von bauteilen mit einer Verschleißschutzbeschichtung, ein so hergestelltes Bauteil sowie dessen Verwendung [Method for producing components with a wear-resistant coating, component produced in this way and use thereof]. Patent DE 10 2007063517 B3, 2009.Google Scholar
Herrmann, M., Matthey, B., Kunze, S., and Petasch, U.: SiC–diamond materials: Wear-resistant and versatile. CFI, Ceram. Forum Int. 91(10), E39E43 (2014).Google Scholar
Yang, Z., He, X., Wu, M., Zhang, L., and Ma, A.: Infiltration mechanism of diamond/SiC composites fabricated by Si-vapor vacuum reactive infiltration process. J. Eur. Ceram. Soc. 33, 869878 (2013).CrossRefGoogle Scholar
Zhu, C., Lang, J., and Ma, N.: Preparation of Si–diamond–SiC composites by in situ reactive sintering and their thermal properties. Ceram. Int. 38(8), 61316136 (2012).CrossRefGoogle Scholar
Yang, Z., He, X., Wu, M., Zhang, L., Ma, A., Liu, R., Hu, H., Zhang, Y., and Qu, X.: Fabrication of diamond/SiC composites by Si-vapor vacuum reactive infiltration. Ceram. Int. 3, 33993403 (2013).CrossRefGoogle Scholar
Matthey, B., Höhn, S., Wolfrum, A-K., Mühle, U., Motylenko, M., Rafaja, D., Michaelis, A., and Herrmann, M.: Microstructural investigation of diamond–SiC composites produced by pressureless silicon infiltration. J. Eur. Ceram. Soc. 37(5), 19171928 (2017).CrossRefGoogle Scholar
Höhn, H., Sempf, K., and Hermann, M.: Artefact-free preparation and characterization of ceramic materials and interfaces. Ceram. Forum Int. 88(11–12), 1620 (2011).Google Scholar
Institut für Struktur-und Funktionskeramik Montanuniversität Leoben: Ball on 3balls-Test (Web-app). Available at: http://www.isfk.at/de/960/ (accessed 16 May 2017).Google Scholar
Blecha, M., Schmid, W., Krauth, A., and Wruss, W.: Herstellung grobkörniger, auf hohen SiC-Gehalt optimierter, SiC-C-Grünkörper für die Herstellung von SiSiC [Manufacturing of coarse-grained SiC-C green bodies optimized for high SiC content for the production of SiSiC]. Sprechsaal 123, 263268 (1990).Google Scholar
Cohrt, H.: Herstellung, Eigenschaften und Anwendung von reaktionsgebundenen, Siliciuminfiltrierten Siliciumkarbid [Preparation, properties and application of reaction-bonded silicon-infiltrated silicon carbide]. Z. Werkstofftech. 16, 277285 (1990).CrossRefGoogle Scholar
Greil, P., Lifka, T., and Kaindl, A.: Biomorphic cellular silicon carbide ceramics from wood: II. Mechanical properties. J. Eur. Ceram. Soc. 18, 19751983 (1998).CrossRefGoogle Scholar
Greil, P., Lifka, T., and Kaindl, A.: Biomorphic cellular silicon carbide ceramics from wood: I. Processing and microstructure. J. Eur. Ceram. Soc. 18, 19611973 (1998).CrossRefGoogle Scholar
Zollfrank, C. and Sieber, H.: Microstructure and phase morphology of wood derived biomorphous SiSiC–ceramics. J. Eur. Ceram. Soc. 24, 495506 (1998).CrossRefGoogle Scholar
Mlungwane, K., Sigalas, I., Herrmann, M., and Rodrıguez, M.: The wetting behaviour and reaction kinetics in diamond–silicon carbide systems. Ceram. Int. 35, 24352441 (2009).CrossRefGoogle Scholar
Sangsuwan, P., Tewari, S.N., Gatica, J.E., Singh, M., and Dickerson, R.: Reactive infiltration of silicon melt through microporous amorphous carbon performs. Metall. Mater. Trans. B 30, 933944 (1999).CrossRefGoogle Scholar
Hon, M. and Davis, R.: Self-diffusion of 14C in polycrystalline beta-SiC. J. Mater. Sci. 14, 24112421 (1979).CrossRefGoogle Scholar
Hon, M., Davis, R., and Newbury, D.: Self-diffusion of 30Si in polycrystalline beta-SiC. J. Mater. Sci. 15, 20732080 (1980).CrossRefGoogle Scholar
Barsoum, M.W.: Fundamentals of Ceramics (Institute of Physics Publishing, London, 2003); pp. 175190.CrossRefGoogle Scholar
Harrer, W., Danzer, R., and Rendtel, A.: Influence of the surface condition on the biaxial strength of a commercial silicon carbide. J. Eur. Ceram. Soc. 36, 38953900 (2016).CrossRefGoogle Scholar
Herrmann, M., Kluge, E., Rödel, C., Mc Kie, A., and van Staden, F.: Corrosion behaviour of silicon carbide–diamond composite materials in aqueous solutions. J. Eur. Ceram. Soc. 34, 21432151 (2014).CrossRefGoogle Scholar
Zerda, T.W., Wieligor, M., Ungar, T., and Palosz, B.: Spatial distribution of residual stress in diamond–silicon carbide composites. J. Phys.: Conf. Ser. 121, 14 (2008).Google Scholar
Larsson, P., Axen, N., Ekström, T., Gordeev, S., and Hogmark, S.: Wear of a new type of diamond composite. Int. J. Refract. Met. Hard Mater. 17(6), 453460 (1999).CrossRefGoogle Scholar
Blug, B., Hörner, M., Matthey, B., and Herrmann, M.: Untersuchung des tribologischen Verhaltens von Diamant–SiC Gradientenwerkstoffen am Beispiel vom Drahtziehen–Experiment und Simulation [Investigation of the tribological behavior of diamond-SiC gradient materials using the wire drawing as an example - experiment and simulation]. In Tagungsband GFT 2013, Gesellschaft für Tribologie e.V. (2013); ISBN 978-3-00-028824-1.Google Scholar
Wolfrum, A-K., Quitzke, C., Matthey, B., Herrmann, M., and Michaelis, A.: Wear behavior of diamond–silicon nitride composites sintered with FAST/SPS. WEAR (2017). (in press). Available at: https://doi.org/10.1016/j.wear.2016.10.021.Google Scholar
MatRessource-Project “EkoDiSc” by the German Federal Ministry of Education and Science (BMBF). Available at: http://www.matressource.de/news/artikel/matressource-projekt-ekodisc-erhaelt-bewilligungsbescheid/ (accessed 16 May 2017).Google Scholar