Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T01:20:32.719Z Has data issue: false hasContentIssue false

Secondary Mullite Formation in Kaolin–Al2O3 Ceramics

Published online by Cambridge University Press:  03 March 2011

Yung-Feng Chen*
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan
Moo-Chin Wang
Affiliation:
Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung 80782, Taiwan
Min-Hsiung Hon
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan
*
a)Address all correspondence to this author. e-mail address: Feng@cubic.mat.ncku.edu.tw
Get access

Abstract

Secondary mullite has been formed in 60 wt% kaolin–40 wt% Al2O3 ceramics by solution-precipitation in the glassy phase in contact with Al2O3 particle, showing a plate-like morphology, at temperatures above 1673 K. The lattice constant modification of secondary mullite has been determined: the lattice parameters of orthorhombic structure of a, b, and c axes decrease from 8.653, 8.770, and 3.167 Å to 7.958, 8.064, and 2.926 Å, respectively. The Al2O3 content in the secondary mullite crystals increases from 59.69 to 70.41 wt% when the grain width increases from 15 to 40 nm. Both the formation of secondary mullite and its grain growth are intimately related to the presence of the glassy phase originated from impurity (K2O) in the kaolin. Their locations as well as their chemical composition of mullite grains, Al2O3 grains, and glassy phase are provided by the meticulous experiments using high-resolution transmission electron microscopy, selected-area electron diffraction, and energy dispersive spectroscopy techniques.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Aksay, I.A., Dabbs, D.M. and Sarikaya, M., J. Am. Ceram. Soc. 74 2343 (1991).CrossRefGoogle Scholar
2Liu, K.C., Thomas, G., Caballero, A., Moya, J.S. and Aza, S.D., Acta. Metall. Mater. 42 489 (1994).CrossRefGoogle Scholar
3Takei, T., Kameshima, Y., Yasumori, A. and Okada, K., J. Am. Ceram. Soc. 82 2876 (1999).CrossRefGoogle Scholar
4Sainz, M.A., Serrano, F.J., Amigo, J.M., Bastida, J. and Caballero, A., J. Eur. Ceram. Soc. 20 403 (2000).CrossRefGoogle Scholar
5Chen, C.Y., Lan, G.S. and Tuan, W.H., J. Eur. Ceram. Soc. 20 2519 (2000).CrossRefGoogle Scholar
6Kleebe, H.J., Siegelin, F., Straubinger, T. and Ziegler, G., J. Eur. Ceram. Soc. 21 2521 (2001).CrossRefGoogle Scholar
7Gualtieri, A., Bellotto, M., Artioli, G. and Clark, S.M., Phys. Chem. Minerals 22 215 (1995).CrossRefGoogle Scholar
8Chen, Y.F., Wang, M.C. and Hon, M.H., J. Mater. Res. 18 1355 (2003).CrossRefGoogle Scholar
9Chen, Y.F., Wang, M.C. and Hon, M.H., J. Ceram. Soc. Jpn. 111 537 (2003).CrossRefGoogle Scholar
10Chen, Y.F., Chang, Y.H., Wang, M.C. and Hon, M.H., J. Mat. Sci. Eng. A, (in press).Google Scholar
11Matsuda, O., Watari, T., Torikai, T., Yamasaki, Y. and Katsuki, H., J. Ceram. Soc. Jpn. 100 719 (1992).Google Scholar
12Hamano, K., Nakajima, H., Okuda, F. and Konuma, M., J. Ceram. Soc. Jpn. 102 80 (1994).Google Scholar
13Chen, Y.F., Wang, M.C. and Hon, M.H., Scripta Mater., (in press).Google Scholar
14Chen, Y.F., Wang, M.C. and Hon, M.H., J. Eur. Ceram. Soc. (2003, in press).Google Scholar
15Schmücker, M., Albers, W. and Schneider, H., J. Eur. Ceram. Soc. 14 511 (1994).CrossRefGoogle Scholar
16Osborn, E.F. and Muan, A., “Phase Equilibrium Diagrams of Oxide Systems”, Plate 5, American Ceramic Society and Edward Orton, Jr. (Ceramic Foundation, New York, 1960).Google Scholar
17Risbud, S.H. and Pask, J.A., J. Mater. Sci. 13 2449 (1978).CrossRefGoogle Scholar
18Burnham, C.W., Carnegie Inst. 63 227 (1964).Google Scholar
19Johnson, S.M. and Pask, J.A., Ceram. Bull. 61 838 (1982).Google Scholar