Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T00:12:56.372Z Has data issue: false hasContentIssue false

Radiation-induced defects and amorphization in zircon

Published online by Cambridge University Press:  31 January 2011

W. J. Weber
Affiliation:
Pacific Northwest Laboratory, P. O. Box 999, Richland, Washington 99352
Get access

Abstract

The effects of self-radiation damage as a function of cumulative alpha-decay events in synthetic zircon doped with 238Pu and natural zircons damaged over geologic time are compared and interpreted in terms of the accumulation of both defects and amorphousness. The radiation-induced unit-cell expansion and amorphization result in macroscopic swelling that increases sigmoidally with cumulative decay events and saturates at a fully amorphous state. The derived amorphous fraction as a function of cumulative dose is consistent with models based on the multiple overlap of displacement cascades, indicating that amorphization in zircon occurs as a result of the local accumulation of high defect concentrations rather than directly within a displacement cascade. Annealing of point defects in the natural zircons suppresses initial swelling and delays the onset of amorphization. Full recrystallization of the zircon structure from the amorphous state occurs in two stages, with kinetics and activation energies consistent with the reported thermal stability of the amorphous state. This study further confirms that actinide doping is a viable accelerated technique to study or simulate radiation effects from alpha decay on geologic time scales.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ewing, R. C. and Haaker, R. F., Nuci. and Chem. Waste Management 1, 51 (1980).CrossRefGoogle Scholar
2Weber, W. J., in Scientific Basis for Nuclear Waste Management VI, edited by Brookins, D. G. (North Holland, New York, 1983), pp. 407414.Google Scholar
3Weber, W. J. and Roberts, F. P., Nucl. Tech. 60, 178 (1983).CrossRefGoogle Scholar
4Turcotte, R. P., Wald, J.W., Roberts, F. P., Rusin, J. M., and Lutze, W., J. Am. Ceram. Soc. 65, 589 (1982).CrossRefGoogle Scholar
5Weber, W. J., Radiat. Eff. 77, 295 (1983).CrossRefGoogle Scholar
6Weber, W. J., Wald, J.W., and Matzke, Hj., J. Nucl. Mater. 138, 196 (1986).CrossRefGoogle Scholar
7Weber, W. J. and Matzke, Hj., Radiat. Eff. 98, 93 (1986).CrossRefGoogle Scholar
8Weber, W. J. and Matzke, Hj., Mater. Lett. 5, 9 (1986).CrossRefGoogle Scholar
9Clinard, F.W. Jr., Am. Ceram. Soc. Bull. 65, 1181 (1986).Google Scholar
10Holland, H. D. and Gottfried, D., Acta Cryst. 8, 291 (1955).CrossRefGoogle Scholar
11Murakami, T., Chakoumakos, B. C., and Ewing, R. C., in Advances in Ceramics (The American Ceramic Society, Columbus, OH, 1986), Vol. 20, pp. 745753.Google Scholar
12Crawford, J. H. Jr., and Witteis, M. C., in Proc. Int. Conf. Peaceful Uses of Atomic Energy (United Nations, New York, 1956), Vol. 7, pp. 654665.Google Scholar
13Vance, E. R. and Anderson, B.W., Mineralogical Magazine 38, 605 (1972).CrossRefGoogle Scholar
14Exarhos, G. J., Nucl. Instrum. Methods Bl, 538 (1984).CrossRefGoogle Scholar
15Weber, W. J. and Maupin, G. D., Nucl. Instrum. Methods B 32, 512 (1988).CrossRefGoogle Scholar
16Browne, E., Dairiki, J. M., and Doebler, R. E., in Table of Isotopes, edited by Lederer, C. M. and Shirley, V. S., 7th ed. (John Wiley and Sons, New York, 1978), p. 1457.Google Scholar
17Headley, T. J., Ewing, R. C., and Haaker, R. F., in 39th Ann. Proc. Electron Microscopy Soc. Amer., edited by Bailey, G.W. (Atlanta, GA, 1981), pp. 112113.Google Scholar
18Headley, T. J. and Ewing, R. C., in Microbeam Analysis-1986, edited by Romig, A. D. Jr., and Chambers, W. F. (San Francisco Press, San Francisco, CA, 1986), pp. 141144.Google Scholar
19Headley, T. J., Ewing, R. C., and Haaker, R. F., Nature 293, 449 (1981).CrossRefGoogle Scholar
20Ewing, R. C. and Headley, T. J., J. Nucl. Mater. 119, 102 (1983).CrossRefGoogle Scholar
21Lumpkin, G.R., Ewing, R. C., and Eyal, Y., J. Mater. Res. 3, 357 (1988).CrossRefGoogle Scholar
22Nellis, W. J., Inorg. Nucl. Chem. 13, 393 (1977).CrossRefGoogle Scholar
23Weber, W. J., J. Nucl. Mater. 98, 206 (1981).CrossRefGoogle Scholar
24Weber, W. J., J. Am. Ceram. Soc. 65, 544 (1982).CrossRefGoogle Scholar
25Wittels, M.C. and Sherrill, F. A., Phys. Rev. 93, 1117 (1954).CrossRefGoogle Scholar
26Vance, E. R. and Boland, J. N., Radiat. Eff. 26, 135 (1975).CrossRefGoogle Scholar
27Roy, R. and Vance, E. R., J. Mater. Sci. 16, 1187 (1981).CrossRefGoogle Scholar
28Vance, E. R., Radiat. Eff. 24, 1 (1975).CrossRefGoogle Scholar
29Roy, R., in Advances in Nucleation and Crystallization in Glasses, edited by Hench, L. L. and Freiman, S.W. (The American Ceramic Society, Columbus, OH, 1971), pp. 5160.Google Scholar
30Primak, W., Phys. Rev. 100, 1677 (1955).CrossRefGoogle Scholar
31Primak, W., J. Appl. Phys. 31, 1524 (1960).CrossRefGoogle Scholar
32Primak, W., The Compacted States of Vitreous Silica (Gordon and Breach, New York, 1975), pp. 130135.Google Scholar
33Clinard, F.W. Jr., and Hobbs, L.W., in Physics of Radiation Effects in Crystals, edited by Johnson, R. A. and Orlov, A. N. (North Holland, New York, 1986), pp. 387471.CrossRefGoogle Scholar
34Swanson, M. L., Parsons, J. R., and Hoelke, C.W., in Radiation Effects in Semiconductors, edited by Corbett, J.W. and Watkins, G. D. (Gordon and Breach, New York, 1971), pp. 359367.Google Scholar
35Gibbons, J. F., Proc. IEEE 60, 1062 (1972).CrossRefGoogle Scholar
36Carter, G. and Webb, R., Radiat. Eff. Lett. 43, 19 (1979).CrossRefGoogle Scholar
37Webb, R. and Carter, G., Radiat. Eff. 42, 159 (1979).CrossRefGoogle Scholar
38Webb, R.P. and Carter, G., Radiat. Eff. 59, 69 (1981).CrossRefGoogle Scholar
39Carter, G., Radiat. Eff. Lett. 86, 25 (1983).CrossRefGoogle Scholar
40Carter, G., Katardjiev, I.V., and Nobes, M. J., Radiat. Eff. 105, 211 (1988).CrossRefGoogle Scholar
41Weber, W. J., Radiat. Eff. 83, 145 (1984).CrossRefGoogle Scholar
42Sandhu, A.S., Singh, L., Ramola, R.C., Singh, S., and Virk, H.S., Nucl. Instrum. Methods B46, 122 (1990).CrossRefGoogle Scholar