Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T13:59:36.378Z Has data issue: false hasContentIssue false

Preparation and absorption properties of polystyrene/Ag/TiO2 multiple coated colloids

Published online by Cambridge University Press:  01 April 2005

J.H. Zhang*
Affiliation:
National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, People's Republic of China
S.Z. Wang
Affiliation:
National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, People's Republic of China
J.B. Liu
Affiliation:
National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, People's Republic of China
Z.L. Wang
Affiliation:
National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, People's Republic of China
N.B. Ming
Affiliation:
National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093, People's Republic of China
*
a) Address all correspondence to this author e-mail: zhangjh@nju.edu.cn
Get access

Abstract

We demonstrated a facile route based on the use of acetone and polyvinylpyrrolidone (PVP) to prepare polystyrene (PS)/Ag/TiO2 multilayered colloids with controllable shell thickness. In this route, PVP absorbed directly onto PS colloid surface, and the Ag seed shell composed of Ag nanoparticles was synthesized directly under the PVP shell by swelling the surface layer of the PS core. Because the PVP shell increased the affinity of the Ag shell to TiO2, the hydrolyzed titania particles could deposit directly onto the core to form the outer TiO2 shell. A seed growth technique and the controllable hydrolysis reaction of tetra-n-butyl titanate were developed to grow the shell thickness of Ag and TiO2, respectively. Studies of the absorption properties indicate that the optical properties of these multilayered composite colloids can be modified by changing the coating species and shell thickness.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lee, J.Y., Hong, S.H., Lee, J.H., Lee, Y.K. and Choi, J.Y.: Coating of TiO2 nanolayer on spherical Ni particles using a novel sol-gel route. J. Mater. Res. 19, 1669 (2004).CrossRefGoogle Scholar
2. Graf, C. and van Blaaderen, A.: Metallodielectric colloidal core-shell particles for photonic applications. Langmuir 18, 524 (2002).CrossRefGoogle Scholar
3. Mayer, A.B.R., Grebner, W. and Wannemacher, R.: Preparation of silver-latex composites. J. Phys. Chem. B 104, 7278 (2000).CrossRefGoogle Scholar
4. Dong, A.G., Wang, Y.J., Tang, Y., Ren, N., Yang, W.L. and Gao, Z.: Fabrication of compact silver nanoshells on polystyrene spheres through electrostatic attraction. Chem. Comm. 350 (2002).CrossRefGoogle ScholarPubMed
5. Liang, Z., Susha, A.S. and Caruso, F.: Metallodielectric opals of layer-by-layer processed coated colloids. Adv. Mater. 14, 1160 (2002).3.0.CO;2-1>CrossRefGoogle Scholar
6. Antipov, A.A., Sukhorukov, G.B., Fedutik, Y.A., Hartmann, J., Giersig, M. and Möhwald, H.: Fabrication of a novel type of metallized colloids and hollow capsules. Langmuir 18, 6687 (2002).CrossRefGoogle Scholar
7. Chen, Z., Wang, Z.L., Zhan, P., Zhang, J.H., Zhang, W.Y., Wang, H.T. and Ming, N.B.: Preparation of metallodielectric composite particles with multishell structure. Langmuir 20, 3042 (2004).CrossRefGoogle ScholarPubMed
8. Liz-Marzán, L.M. and Mulvaney, P.: The assembly of coated nanocrystals. J. Phys. Chem. B 107, 7312 (2003).CrossRefGoogle Scholar
9. Goodey, A.P. and McDevitt, J.T.: Multishell microspheres with integrated chromatographic and detection layers for use in array sensors. J. Am. Chem. Soc. 125, 2870 (2003).CrossRefGoogle ScholarPubMed
10. Caruso, F. and Möhwald, H.: Preparation and characterization of ordered nanoparticle and polymer composite multilayers on colloids. Langmuir 15, 8276 (1999).CrossRefGoogle Scholar
11. Guo, H., Zhao, X., Ning, G. and Liu, G.: Synthesis of Ni/polystyrene/TiO2 multiply coated microspheres. Langmuir 19, 4884 (2003).CrossRefGoogle Scholar
12. Zhang, J.H., Chen, Z., Wang, Z.L., Zhang, W.Y. and Ming, N.B.: Preparation of monodisperse polystyrene spheres in aqueous alcohol system. Mater. Lett. 57, 466 (2003).CrossRefGoogle Scholar
13. Xia, Y., Gates, B., Yin, Y. and Lu, Y.: Monodispersed colloidal spheres: Old materials with new applications. Adv. Mater. 12, 693 (2000).3.0.CO;2-J>CrossRefGoogle Scholar
14. Mulvaney, P.: Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12, 788 (1996).CrossRefGoogle Scholar
15. Wang, Z.L., Chan, C.T., Zhang, W.Y., Ming, N.B. and Sheng, P.: Three-dimensional self-assembly of metal nanoparticles: Possible photonic crystal with a complete gap below the plasma frequency. Phys. Rev. B 64, 113108 (2001).CrossRefGoogle Scholar
16. Safrany, A., Gao, R.M. and Rabani, J.: Optical properties and reactions of radiation induced TiO2 electrons in aqueous colloid solutions. J. Phys. Chem. B 104, 5848 (2000).CrossRefGoogle Scholar
17. Mor, F.K., Shankar, K., Varghese, O.K. and Grimes, C.A.: Photoelectrochemical properties of titania nanotubes. J. Mater. Res. 19, 2989 (2004).CrossRefGoogle Scholar
18. Pattanaik, M. and Bhaumik, S.K.: Adsorption behaviour of polyvinyl pyrrolidone on oxide surfaces. Mater. Lett. 44, 352 (2000).CrossRefGoogle Scholar
19. Smith, J.N., Meadows, J. and Williams, P.A.: Adsorption of polyvinylpyrrolidone onto polystyrene lattices and the effect on colloid stabitlity. Langmuir 12, 3773 (1996).CrossRefGoogle Scholar
20. Graf, C., Dirk, L.J. Vossen, Imhof, A. and van Blaaderen, A.: A general method to coat colloidal particles with silica. Langmuir 19, 6693 (2003).CrossRefGoogle Scholar
21. Van Hulst, H.C. de: In Light Scattering by Small Particles, (Wiley, New York, 1957), p. 90.Google Scholar
22. Kobayashi, Y., Salgueiriño-Maceira, V. and Liz-Marzán, L.M.: Deposition of silver nanoparticles on silica spheres by pretreatment steps in electroless plating. Chem. Mater. 13, 1630 (2001).CrossRefGoogle Scholar
23. Jackson, J.B. and Halas, N.J.: Silver nanoshells: Variations in morphologies and optical properties. J. Phys. Chem. B 105, 2743 (2001).CrossRefGoogle Scholar
24. Wang, Y., Zhang, S. and Wu, X.: Synthesis and optical properties of mesostructured titania-surfactant inorganic-organic nanocomposites. Nanotechnology 15, 1162 (2004).CrossRefGoogle Scholar
25. Salinaro, A., Emeline, A.V., Zhao, J., Hidaka, H., Ryabchuk, V.K. and Serpone, N.: Terminology, relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. Part II: Experimental determination of quantum yields. Pure Appl. Chem. 71, 321 (1999).CrossRefGoogle Scholar