Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T10:44:00.890Z Has data issue: false hasContentIssue false

Polyurethane-based bioadhesive synthesized from polyols derived from castor oil (Ricinus communis) and low concentration of chitosan

Published online by Cambridge University Press:  25 September 2017

Yomaira L. Uscátegui
Affiliation:
Doctoral Program in Biosciences, Research Group on Energy, Materials and Environment, Universidad de La Sabana, Chia 140013, Colombia
Said J. Arévalo-Alquichire
Affiliation:
Doctoral Program in Biosciences, Research Group on Energy, Materials and Environment, Universidad de La Sabana, Chia 140013, Colombia
José A. Gómez-Tejedor
Affiliation:
Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia 46022, Spain; and Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Valencia 46022, Spain
Ana Vallés-Lluch
Affiliation:
Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia 46022, Spain
Luis E. Díaz
Affiliation:
Bioprospecting Research Group, Universidad de La Sabana, Chía, Cundinamarca 140013, Colombia
Manuel F. Valero*
Affiliation:
Research Group on Energy, Materials and Environment, Universidad de La Sabana, Chia 140013, Colombia
*
a)Address all correspondence to this author. e-mail: manuel.valero@unisabana.edu.co
Get access

Abstract

Polyurethane-based bioadhesive was synthesized with polyols derived from castor oil (chemically modified and unmodified) and hexamethylene diisocyanate with chitosan addition as a bioactive filler. The objective was to evaluate the effect of type of polyols with the incorporation of low-concentrations of chitosan on the mechanical and biological properties of the polymer to obtain suitable materials in the design of biomaterials. The results showed that increasing physical crosslinking increased the mechanical and adhesive properties. An in vitro cytotoxic test of polyurethanes showed cellular viability. The biocompatibility of the polyurethanes favors the adhesion of L929 cells at 6, 24, and 48 h. The polyurethanes showed bacterial inhibition depending on the polyol and percentage of chitosan. The antibacterial effect of the polyurethanes for Escherichia coli decreased 60–90% after 24 h. The mechanical and adhesive properties together with biological response in this research suggested these polyurethanes as external application tissue bioadhesives.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Lakshmi Nair

References

REFERENCES

Ates, B., Koytepe, S., Karaaslan, M.G., Balcioglu, S., and Gulgen, S.: Biodegradable non-aromatic adhesive polyurethanes based on disaccharides for medical applications. Int. J. Adhes. Adhes. 49, 90 (2014).CrossRefGoogle Scholar
Bouten, P.J.M., Zonjee, M., Bender, J., Yauw, S.T.K., Van Goor, H., Van Hest, J.C.M., and Hoogenboom, R.: The chemistry of tissue adhesive materials. Prog. Polym. Sci. 39, 1375 (2014).CrossRefGoogle Scholar
Patel, A.K.: Chitosan: Emergence as potent candidate for green adhesive market. Biochem. Eng. J. 102, 74 (2015).CrossRefGoogle Scholar
Guo, J., Kim, G.B., Shan, D., Kim, J.P., Hu, J., Wang, W., Hamad, F.G., Qian, G., Rizk, E.B., and Yang, J.: Click chemistry improved wet adhesion strength of mussel-inspired citrate-based antimicrobial bioadhesives. Biomaterials 112, 275 (2017).CrossRefGoogle ScholarPubMed
Khanlari, S., Tang, J., Kirkwood, K.M., and Dubé, M.: Synthesis and properties of a poly(sodium acrylate) bioadhesive nanocomposite. Int. J. Polym. Mater. Polym. Biomater. 65, 881 (2016).CrossRefGoogle Scholar
Marques, D.S., Santos, J.M.C., Ferreira, P., Correia, T.R., Correia, I.J., Gil, M.H., and Baptista, C.M.S.G.: Photocurable bioadhesive based on lactic acid. Mater. Sci. Eng., C 58, 601 (2016).CrossRefGoogle ScholarPubMed
Jeon, O., Samorezov, J.E., and Alsberg, E.: Single and dual crosslinked oxidized methacrylated alginate/PEG hydrogels for bioadhesive applications. Acta Biomater. 10, 47 (2014).Google Scholar
Wheat, J.C. and Wolf, J.S.: Advances in bioadhesives, tissue sealants, and hemostatic agents. Urol. Clin. North Am. 36, 265 (2009).Google Scholar
Mehdizadeh, M., Weng, H., Gyawali, D., Tang, L., and Yang, J.: Biomaterials injectable citrate-based mussel-inspired tissue bioadhesives with high wet strength for sutureless wound closure. Biomaterials 33, 7972 (2012).CrossRefGoogle ScholarPubMed
Guo, J., Wang, W., Hu, J., Xie, D., Gerhard, E., Nisic, M., Shan, D., Qian, G., Zheng, S., and Yang, J.: Biomaterials synthesis and characterization of anti-bacterial and anti-fungal citrate-based mussel-inspired bioadhesives. Biomaterials 85, 204 (2016).Google Scholar
Seeni Meera, K.M., Murali Sankar, R., Paul, J., Jaisankar, S.N., and Mandal, A.B.: The influence of applied silica nanoparticles on a bio-renewable castor oil based polyurethane nanocomposite and its physicochemical properties. Phys. Chem. Chem. Phys. 16, 9276 (2014).Google Scholar
Szycher, M.: Szycher’s Handbook of Polyurethanes (CRC Press Inc, Boca Ratón, 2012); ch. 22.Google Scholar
Alves, P., Ferreira, P., and Gil, M.H.: Biomedical Polyurethane-Based Materials. In Polyurethane: Properties, Structure and Applications, Cavaco, L.I. and Melo, J.A., eds. (Nova Science Publishers, New York, 2012), pp. 125.Google Scholar
Usman, A., Zia, K.M., Zuber, M., Tabasum, S., Rehman, S., and Zia, F.: Chitin and chitosan based polyurethanes: A review of recent advances and prospective biomedical applications. Int. J. Biol. Macromol. 86, 630 (2016).Google Scholar
Kaur, G., Mahajan, M., and Bassi, P.: Derivatized polysaccharides: Preparation, characterization, and application as bioadhesive polymer for drug delivery. Int. J. Polym. Mater. 62, 475 (2013).Google Scholar
Anirudhan, T.S., Nair, S.S., and Nair, A.S.: Fabrication of a bioadhesive transdermal device from chitosan and hyaluronic acid for the controlled release of lidocaine. Carbohydr. Polym. 152, 687 (2016).Google Scholar
Liu, Y.G., Zhou, C.R., and Sun, Y.A.: A biomimetic strategy for controllable degradation of chitosan scaffolds. J. Mater. Res. 27, 1859 (2012).Google Scholar
Maisonneuve, L., Chollet, G., Grau, E., and Cramail, H.: Vegetable oils: A source of polyols for polyurethane materials. Ol., Corps Gras, Lipides 23, D508 (2016).Google Scholar
Narute, P. and Palanisamy, A.: Study of the performance of polyurethane coatings derived from cottonseed oil polyol. J. Coat. Technol. Res. 13, 171 (2016).Google Scholar
Uscátegui, Y., Arévalo, F., Díaz, L., Cobo, M., and Valero, M.: Microbial degradation, cytotoxicity and antibacterial activity of polyurethanes based on modified castor oil and polycaprolactone. J. Biomater. Sci., Polym. Ed. 27, 1860 (2016).Google Scholar
Shaik, A., Narayan, R., and Raju, K.V.S.N.: Synthesis and properties of siloxane-crosslinked polyurethane-urea/silica hybrid films from castor oil. J. Coat. Technol. Res. 11, 397 (2014).Google Scholar
Valero, M.F. and Gonzalez, A.: Polyurethane adhesive system from castor oil modified by a transesterification reaction. J. Elastomers Plast. 44, 433 (2012).Google Scholar
Valero, M.F. and Ortegón, Y.: Polyurethane elastomers-based modified castor oil and poly(e-caprolactone) for surface-coating applications: Synthesis, characterization, and in vitro degradation. J. Elastomers Plast. 47, 360 (2015).Google Scholar
Valero, M.F. and Díaz, L.E.: Poliuretanos obtenidos a partir de aceite de higuerilla modificado y poli-isocianatos de lisina: Síntesis, propiedades mecánicas y térmicas y degradación in vitro. Quim. Nova 37, 1441 (2014).Google Scholar
Arevalo, F., Uscategui, Y.L., Diaz, L.E., Cobo, M., and Valero, M.F.: Effect of the incorporation of chitosan on the physico-chemical, mechanical properties and biological activity on a mixture of polycaprolactone and polyurethanes obtained from castor oil. J. Biomater. Appl. 31, 708 (2016).Google Scholar
Cakić, S.M., Ristić, I.S., Cincović, M.M., Nikolić, N.C., Nikolić, L., and Cvetinov, M.J.: Synthesis and properties biobased waterborne polyurethanes from glycolysis product of PET waste and poly(caprolactone) diol. Prog. Org. Coat. 105, 111 (2017).CrossRefGoogle Scholar
Conejero-García, Á., Gimeno, H.R., Sáez, Y.M., Vilariño-Feltrer, G., Ortuño-Lizarán, I., and Vallés-Lluch, A.: Correlating synthesis parameters with physicochemical properties of poly(glycerol sebacate). Eur. Polym. J. 87, 406 (2017).Google Scholar
Zia, K.M., Zuber, M., Saif, M.J., Jawaid, M., Mahmood, K., Shahid, M., Anjum, M.N., and Ahmad, M.N.: Chitin based polyurethanes using hydroxyl terminated polybutadiene, part III: Surface characteristics. Int. J. Biol. Macromol. 62, 670 (2013).CrossRefGoogle ScholarPubMed
Skrobot, J., Zair, L., Ostrowski, M., and Fray, M.: El biomaterials new injectable elastomeric biomaterials for hernia repair and their biocompatibility. Biomaterials 75, 182 (2016).Google Scholar
Riaz, T., Ahmad, A., Saleemi, S., Adrees, M., Jamshed, F., Moqeet, A., and Jamil, T.: Synthesis and characterization of polyurethane-cellulose acetate blend membrane for chromium(VI) removal. Carbohydr. Polym. 153, 582 (2016).Google Scholar
Pignatello, R., Impallomeni, G., Pistarà, V., Cupri, S., Graziano, A.C.E., Cardile, V., and Ballistreri, A.: New amphiphilic derivatives of poly(ethylene glycol) (PEG) as surface modifiers of colloidal drug carriers. III. Lipoamino acid conjugates with carboxy- and amino-PEG(5000) polymers. Mater. Sci. Eng., C 46, 470 (2015).Google Scholar
Arnal-Pastor, M., Comin-Cebrian, S., Martinez-Ramos, C., Monleon Pradas, M., and Valles-Lluch, A.: Hydrophilic surface modification of acrylate-based biomaterials. J. Biomater. Appl. 30, 1429 (2016).Google Scholar
Bakhshi, H., Yeganeh, H., Mehdipour-Ataei, S., Shokrgozar, M.A., Yari, A., and Saeedi-Eslami, S.N.: Synthesis and characterization of antibacterial polyurethane coatings from quaternary ammonium salts functionalized soybean oil based polyols. Mater. Sci. Eng., C 33, 153 (2013).CrossRefGoogle ScholarPubMed
Hou, Z., Zhang, H., Qu, W., Xu, Z., and Han, Z.: Biomedical segmented polyurethanes based on polyethylene glycol, poly(ε-caprolactone-co-D,L-lactide), and diurethane diisocyanates with uniform hard segment: Synthesis and properties. Int. J. Polym. Mater. Polym. Biomater. 65, 947 (2016).Google Scholar
Gentile, P., Bellucci, D., Sola, A., Mattu, C., Cannillo, V., and Ciardelli, G.: Composite scaffolds for controlled drug release: Role of the polyurethane nanoparticles on the physical properties and cell behaviour. J. Mech. Behav. Biomed. Mater. 44, 53 (2015).CrossRefGoogle ScholarPubMed
Pitchaimani, A., Duong, T., Nguyen, T., and Koirala, M.: Impact of cell adhesion and migration on nanoparticle uptake and cellular toxicity. Toxicol. In Vitro 43, 29 (2017).Google Scholar
Kara, F., Aksoy, E.A., Yuksekdag, Z., Hasirci, N., and Aksoy, S.: Synthesis and surface modification of polyurethanes with chitosan for antibacterial properties. Carbohydr. Polym. 112, 39 (2014).Google Scholar
Valero, M.F., Pulido, J.E., Ramírez, Á., and Cheng, Z.: Sintesis de poliuretanos a partir de polioles obtenidos a partir del aceite de higuerilla modificado por transesterificación con pentaeritritol. Quim. Nova 31, 2076 (2008).Google Scholar
Cakić, S.M., Ristić, I.S., Cincović, M.M., Stojiljković, D.T., János, C.J., Cvetinov, M.J., and Stamenković, J.V.: Glycolyzed poly(ethylene terephthalate) waste and castor oil-based polyols for waterborne polyurethane adhesives containing hexamethoxymethyl melamine. Prog. Org. Coat. 78, 357 (2015).Google Scholar
Kathalewar, M., Sabnis, A., and D’Mello, D.: Isocyanate free polyurethanes from new CNSL based bis-cyclic carbonate and its application in coatings. Eur. Polym. J. 57, 99 (2014).CrossRefGoogle Scholar
Aung, M.M., Yaakob, Z., Kamarudin, S., and Abdullah, L.C.: Synthesis and characterization of Jatropha (Jatropha curcas L.) oil-based polyurethane wood adhesive. Ind. Crops Prod. 60, 177 (2014).Google Scholar
Ferreira, P., Pereira, R., Coelho, J.F.J., Silva, A.F.M., and Gil, M.H.: Modification of the biopolymer castor oil with free isocyanate groups to be applied as bioadhesive. Int. J. Biol. Macromol. 40, 144 (2007).CrossRefGoogle ScholarPubMed
Bakhshi, H., Yeganeh, H., Yari, A., and Nezhad, S.K.: Castor oil-based polyurethane coatings containing benzyl triethanol ammonium chloride: Synthesis, characterization, and biological properties. J. Mater. Sci. 49, 5365 (2014).Google Scholar
Corcuera, M.A., Rueda, L., Fernandez d’Arlas, B., Arbelaiz, A., Marieta, C., Mondragon, I., and Eceiza, A.: Microstructure and properties of polyurethanes derived from castor oil. Polym. Degrad. Stab. 95, 2175 (2010).Google Scholar
Moussout, H., Ahlafi, H., Aazza, M., and Bourakhouadar, M.: Kinetics and mechanism of the thermal degradation of biopolymers chitin and chitosan using thermogravimetric analysis. Polym. Degrad. Stab. 130, 1 (2016).CrossRefGoogle Scholar
Gámiz-González, M.A., Correia, D.M., Lanceros-Mendez, S., Sencadas, V., Gómez Ribelles, J.L., and Vidaurre, A.: Kinetic study of thermal degradation of chitosan as a function of deacetylation degree. Carbohydr. Polym. 167, 52 (2017).Google Scholar
Valero, M.F., Pulido, J.E., Ramírez, Á., and Cheng, Z.: Determinación de la densidad de entrecruzamiento de poliuretanos obtenidos a partir de aceite de ricino modificado por transesterificación. Polímeros 19, 14 (2009).CrossRefGoogle Scholar
Temenoff, J.S. and Mikos, A.G.: Biomaterials (Pearson/Prentice Hall, Upper Saddle River, NJ, 2008).Google Scholar
Depan, D., Surya, P.K.C.V., Girase, B., and Misra, R.D.K.: Organic/inorganic hybrid network structure nanocomposite scaffolds based on grafted chitosan for tissue engineering. Acta Biomater. 7, 2163 (2011).Google Scholar
Sordel, T., Kermarec-Marcel, F., Garnier-Raveaud, S., Glade, N., Sauter-Starace, F., Pudda, C., Borella, M., Plissonnier, M., Chatelain, F., Bruckert, F., and Picollet-D’hahan, N.: Influence of glass and polymer coatings on CHO cell morphology and adhesion. Biomaterials 28, 1572 (2007).Google Scholar
Pehlivanova, V., Krasteva, V., Seifert, B., Lützow, K., Tsoneva, I., Becker, T., Richau, K., Lendlein, A., and Tzoneva, R.: The role of alternating current electric field for cell adhesion on 2D and 3D biomimetic scaffolds based on polymer materials and adhesive proteins. J. Mater. Res. 28, 2180 (2013).Google Scholar
Zhu, Y., Dong, Z., Wejinya, U.C., Jin, S., and Ye, K.: Determination of mechanical properties of soft tissue scaffolds by atomic force microscopy nanoindentation. J. Biomech. 44, 2356 (2011).Google Scholar
Liu, N., Chen, X.G., Park, H.J., Liu, C.G., Liu, C.S., Meng, X.H., and Yu, L.J.: Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli . Carbohydr. Polym. 64, 60 (2006).Google Scholar