Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T01:26:27.310Z Has data issue: false hasContentIssue false

Poly(butyl terephthalate)/oxytetramethylene + oxidized carbon nanotubes hybrids: Mechanical and tribological behavior

Published online by Cambridge University Press:  03 July 2012

Witold Brostow*
Affiliation:
Department of Materials Science and Engineering, Laboratory of Advanced Polymers and Optimized Materials; and Department of Physics, Center for Advanced Research and Technology, University of North Texas, Denton, Texas 76207
Georg Broza
Affiliation:
Institute of Polymers and Composites, Technical University of Hamburg, 21073 Hamburg, Germany
Tea Datashvili
Affiliation:
Department of Materials Science and Engineering, Laboratory of Advanced Polymers and Optimized Materials; and Department of Physics, Center for Advanced Research and Technology, University of North Texas, Denton, Texas 76207
Haley E. Hagg Lobland
Affiliation:
Department of Materials Science and Engineering, Laboratory of Advanced Polymers and Optimized Materials; and Department of Physics, Center for Advanced Research and Technology, University of North Texas, Denton, Texas 76207
Agata Kopyniecka
Affiliation:
Institute of Polymers and Composites, Technical University of Hamburg, 21073 Hamburg, Germany
*
a)Address all correspondence to this author. e-mail: wbrostow@yahoo.com
Get access

Abstract

We have created hybrids of functionalized single wall carbon nanotubes (fSWCNTs) and also multiwall CNTs (fMWCNTs) with PBT/PTMO, a block copolymer of semicrystalline poly(butyl terephthalate) (PBT) with amorphous oxytetramethylene (PTMO). For both single wall (SW) and multiwall (MW) carbon nanotubes (CNTs) tensile modulus and strain at break as a function of CNTs’ concentration (cCNT) show maxima. Elongation at break is enhanced by the nanotubes, a plasticizing effect—much stronger for SWCNTs because they have less contact points per unit area with the matrix and also are more flexible. Repetitive tensile tests were also performed; each loading cycle resulted in lowering the tensile modulus. Brittleness B(cCNT) diagrams show minima. New results for CNT hybrids fit an earlier general diagram for determination of viscoelastic recovery in sliding wear (f) as a function of brittleness (B); the original equation with unchanged parameters covers also these results. Volumetric wear was determined after abrasion on a pin-on-disk tribometer. Minima are seen on the volumetric wear versus cCNT diagrams, similar to those on the B(cCNT) diagrams.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Goldsmid, H.J.: Thermoelectric Refrigeration (Plenum Press, New York, 1964).CrossRefGoogle Scholar
2.Rowe, D.M.: Thermoelectrics Handbook—Macro to Nano (Taylor and Francis, New York, 2006).Google Scholar
3.Broza, G. and Schulte, K.: Orientation behavior in axial tension of half-molten poly(ether-b-ester) copolymers, in Block Copolymers, edited by Baltá Calleja, F.J. and Roslaniec, Z. (Marcel Dekker, New York, 2000); pp. 434, Chapter 15.Google Scholar
4.Schroeder, H. and Cella, R.J.: Encyclopedia of Polymer Science and Engineering (Wiley, New York, 1988), Chapter 12.Google Scholar
5.Rabello, M.: Additives for Polymers (Artliber, São Paulo, 2000).Google Scholar
6.Gatos, K.G., Thomann, R., and Karger-Kocsis, J.: Characteristics of ethylene propylene diene monomer rubber/organoclay nanohybrids resulting from different processing conditions and formulations. Polym. Int. 53, 1191 (2004).CrossRefGoogle Scholar
7.dos Santos, D.S. Jr., Goulet, P.J.G., Pieczonka, N.P.W., Oliveira, O.N. Jr., and Aroca, J.R.: Gold nanoparticle embedded, self-sustained chitosan films as substrates for surface-enhanced Raman scattering. Langmuir. 20, 10273 (2004).CrossRefGoogle ScholarPubMed
8.Brostow, W., Keselman, M., Mironi-Harpaz, I., Narkis, M., and Peirce, R.: Effects of carbon black on tribology of blends of poly(vinylidene fluoride) with irradiated and non irradiated ultrahigh molecular weight polyethylene. Polymer. 46, 5058 (2005).CrossRefGoogle Scholar
9.Chow, W.S., Mohd Ishak, Z.A., and Karger-Kocsis, J.: An atomic force microscopy study on the blend morphology and clay dispersion in Polyamide-6 polypropylene/organoclay system. J. Polym. Sci., Part B: Polym. Phys. 43, 1198 (2005).CrossRefGoogle Scholar
10.Brostow, W., Gorman, B.P., and Olea-Mejia, O.: Focused ion beam milling and scanning electron microscopy characterization of polymer + metal hybrids. Mater. Lett. 61, 1333 (2007).CrossRefGoogle Scholar
11.Gatos, K.G., Kameo, K., and Karger-Kocsis, J.: On the friction and sliding wear of rubber/layered silicate nanohybrids. Express Polym. Lett. 1, 27 (2007).CrossRefGoogle Scholar
12.Brostow, W., Buchman, A., Buchman, E., and Olea-Mejia, O.: Microhybrids of metal powder incorporated in polymeric matrices: Friction, mechanical behavior, and microstructure. Polym. Eng. Sci. 48, 1977 (2008).CrossRefGoogle Scholar
13.Karger-Kocsis, J., Shang, P.P., Mohd Ishak, Z.A., and Rösch, M.: Melting and crystallization of in situ polymerized cyclic butylene terephthalates with and without organoclay: A modulated DSC study. Express Polym. Lett. 1, 60 (2007).CrossRefGoogle Scholar
14.Pegoretti, A., Dorigato, A., and Penati, A.: Tensile mechanical response of polyethylene-clay nanohybrids. Express Polym. Lett. 1, 123 (2007).CrossRefGoogle Scholar
15.Brostow, W., Datashvili, T., and Hackenberg, K.P.: Synthesis and characterization of poly(methyl acrylate) + SiO2 hybrids. e-Polymers no. 054 (2008).CrossRefGoogle Scholar
16.Carrión, F.J., Arribas, A., Bermúdez, M-D., and Guillamon, A.: Physical and tribological properties of a new polycarbonate-organoclay nanohybrids. Eur. Polym. J. 44, 968 (2008).CrossRefGoogle Scholar
17.Perez, L.D., Giraldo, L.F., Brostow, W., and Lopez, B.L.: Poly(methyl acrylate) + mesoporous silica nanohybrids: Mechanical and thermophysical properties. e-Polymers no. 029 (2007).CrossRefGoogle Scholar
18.Arribas, A., Bermudez, M-D., Brostow, W., Carrion-Vilches, F-J., and Olea-Mejia, O.: Scratch resistance of a polycarbonate + organoclay nanohybrid. Express Polym. Lett. 3, 621 (2009).CrossRefGoogle Scholar
19.Brostow, W., Chonkaew, W., Datashvili, T., and Menard, K.P.: Tribological properties of epoxy + silica hybrid materials. J. Nanosci. Nanotechnol. 9, 1916 (2009).CrossRefGoogle ScholarPubMed
20.Lourie, O. and Wagner, H.D.: Evaluation of Young’s modulus of carbon nanotubes by micro-Raman spectroscopy. J. Mater. Res. 13, 2418 (1998).CrossRefGoogle Scholar
21.Wagner, H.D., Lourie, O., Feldman, Y., and Tenne, R.: Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix. Appl. Phys. Lett. 73, 3527 (1998).Google Scholar
22.Sandler, J., Shaffer, M.S.P., Prasse, T., Bauhofer, W., Schulte, K., and Windle, A.H.: Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer 40, 5967 (1999).CrossRefGoogle Scholar
23.Su, M., Zheng, B., and Liu, J.: A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity. Chem. Phys. Lett. 322, 321 (2000).CrossRefGoogle Scholar
24.Roslaniec, Z., Broza, G., and Schulte, K.: Nanohybrids based on multiblock polyester elastomers (PEEs) and carbon nanotubes (CNTs). Compos. Interfaces 10, 95 (2003).CrossRefGoogle Scholar
25.Assouline, A., Lustiger, A., Barber, A.H., Cooper, C.A., Klein, E., Wachtel, E., and Wagner, H.D.: Nucleation ability of multiwall carbon nanotubes in polypropylene composites. J. Polym. Sci., Part B: Polym. Phys. 41, 520 (2003).CrossRefGoogle Scholar
26.Ando, Y., Zhao, X., Sugai, T., and Kumar, M.: Growing carbon nanotubes. Mater. Today 7, 22 (2004).CrossRefGoogle Scholar
27.Broza, G., Kwiatkowska, M., Roslaniec, Z., and Schulte, K.: Processing and assessment of poly(butylene terephthalate) nanohybrids reinforced with oxidized single wall carbon nanotubes. Polymer 46, 5860 (2005).CrossRefGoogle Scholar
28.Broza, G.: Thermoplastic elastomers with multiwalled carbon nanotubes: Influence of dispersion methods on morphology. Compos. Sci. Technol. 70, 1006 (2010).CrossRefGoogle Scholar
29.Xie, X-L., Mai, Y-W., and Zhou, X-P.: Dispersion and alignment of carbon nanotubes in polymer matrix. Mater. Sci. Eng., R 49, 89 (2005).CrossRefGoogle Scholar
30.Broza, G.: Synthesis, properties, functionalization and applications of carbon nanotubes: A state of the art review. Chem. Chem. Technol. 4, 35 (2010).CrossRefGoogle Scholar
31.Giraldo, L.F., Brostow, W., Devaux, E., López, B.L., and Pérez, L.D.: Scratch and wear resistance of Polyamide 6 reinforced with multiwall carbon nanotubes. J. Nanosci. Nanotechnol. 8, 3176 (2008).CrossRefGoogle ScholarPubMed
32.Giraldo, L.F., López, B.L., and Brostow, W.: Effects of the type of carbon nanotubes on tribological properties of Polyamide 6. Polym. Eng. Sci. 49, 896 (2009).CrossRefGoogle Scholar
33.Vail, J.R., Burris, D.L., and Sawyer, W.G.: Multifunctionality of single-walled carbon nanotube–polytetrafluoroethylene nanocomposites. Wear 267, 619 (2009).CrossRefGoogle Scholar
34.Rabinowicz, E.: Friction and Wear of Materials, 2nd ed. (Wiley, New York, 1995).Google Scholar
35.Brostow, W., Hagg Lobland, H.E., and Narkis, M.: Sliding wear, viscoelasticity and brittleness of polymers. J. Mater. Res. 21, 2422 (2006).CrossRefGoogle Scholar
36.Brostow, W. and Hagg Lobland, H.E.: Brittleness of materials: Implications for composites and relation to impact strength. J. Mater. Sci. 45, 242 (2010).CrossRefGoogle Scholar
37.Brostow, W., Hagg Lobland, H.E., and Narkis, M.: The concept of materials brittleness and its applications. Polym. Bull. 59, 1697 (2011).CrossRefGoogle Scholar
38.Kopczynska, A. and Ehrenstein, G.W.: Polymeric surfaces and their true surface tension in solids and melts. J. Mater. Educ. 29, 325 (2007).Google Scholar
39.Blaszczak, P., Brostow, W., Datashvili, T., and Hagg Lobland, H.E.: Rheology of low-density polyethylene + Boehmite composites. Polym. Compos. 31, 1909 (2010); Idem, http://4spepro.org/view.php?source=003493-2011-01-11.CrossRefGoogle Scholar
40.Brostow, W., Deborde, J-L., Jaklewicz, M., and Olszynski, P.: Tribology with emphasis on polymers: Friction, scratch resistance and wear. J. Mater. Educ. 25, 119 (2003).Google Scholar
41.Brostow, W., Kovacevic, V., Vrsaljko, D., and Whitworth, J.: Tribology of polymers and polymer-based composites. J. Mater. Educ. 32, 273 (2010).Google Scholar
42.Pisanova, E. and Zhandarov, S.: Fiber-reinforced heterogeneous composites, in Performance of Plastics, edited by Brostow, W. (Hanser, Munich—Cincinnati, 2000), Chapter 19.Google Scholar
43.Szymczyk, A., Roslaniec, Z., Zenker, M., Garcia-Gutierrez, M.C., Hernandez, J.J., Rueda, D.R., Nogales, A., and Ezquerra, T.A.: Preparation and characterization of nanohybrids based on COOH functionalized multiwalled carbon nanotubes and on poly(trimethylene terephthalate). Express Polym. Lett. 5, 977 (2011).CrossRefGoogle Scholar
44.Brostow, W., Cunha, A.M., Quintanilla, J., and Simões, R.: Predicting cracking phenomena in molecular dynamics simulations of polymer liquid crystals. Macromol. Theory Simul. 11, 308 (2002).3.0.CO;2-Z>CrossRefGoogle Scholar
45.Brostow, W. and Simões, R.: Tribological and mechanical behavior of polymers simulated by molecular dynamics. J. Mater. Educ. 27, 19 (2005).Google Scholar
46.Brostow, W., Damarla, G., Howe, J., and Pietkiewicz, D.: Determination of wear of surfaces by scratch testing. e-Polymers, no. 025 (2004).CrossRefGoogle Scholar
47.Myshkin, N.K., Petrokovets, M.I., and Kovalev, A.V., Tribology of polymers: Friction, wear and mass transfer. Tribol. Int. 38, 910 (2005).CrossRefGoogle Scholar
48.Brostow, W., Chonkaew, W., Rapoport, L., Soifer, Y., and Verdyan, A.: Grooves in microscratch testing. J. Mater. Res. 22, 2483 (2007).CrossRefGoogle Scholar
49.Desai, R.C. and Kapral, R.: Dynamics of Self-organized and Self-assembled Structures (Cambridge University Press, Cambridge—New York, 2009).CrossRefGoogle Scholar
50.Jackovich, D., O’Toole, B., Cameron Hawkins, M., and Sapochak, L.: Temperature and mold size effects on physical and mechanical properties of a polyurethane foam. J. Cell. Plast. 41, 153 (2005).CrossRefGoogle Scholar
51.Dalle Vacche, S., Oliveira, F., Leterrier, Y., Michaud, V., Damjanovic, D., and Månson, J-A.: The effect of processing conditions on the morphology, thermomechanical, dielectric, and piezoelectric properties of P(VDF-TrFE)/BaTiO3 composites. J. Mater. Sci. 47, 4763 (2012).CrossRefGoogle Scholar
52.Yang, Z., Chen, T., He, R., Guan, G., Li, H., Qiu, L., and Peng, H.: Aligned carbon nanotube sheets for the electrodes of organic solar cells. Adv. Mater. 23, 5436 (2011).CrossRefGoogle ScholarPubMed