Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T00:03:00.506Z Has data issue: false hasContentIssue false

Phase selection in precursor-derived yttrium aluminum garnet and related Al2O3–Y2O3 compositions

Published online by Cambridge University Press:  01 April 2005

Ashutosh S. Gandhi
Affiliation:
Materials Department, University of California, Santa Barbara, California 93106-5050
Carlos G. Levi*
Affiliation:
Materials Department, University of California, Santa Barbara, California 93106-5050
*
a) Address all correspondence to this author. e-mail: levic@engineering.ucsb.edu
Get access

Abstract

Al2O3–Y2O3 powders were synthesized in the range of 25–55% Y2O3 by reverse coprecipitation of nitrate solutions. All starting powders were amorphous and formed primary yttrium aluminum garnet (YAG) upon crystallization. X-ray diffraction detected only garnet in compositions of 30–40% Y2O3 after heat treatment at 1250 °C. Compositions of 45–55% Y2O3 established a metastable YAG + Y4Al2O9 microstructure. The YAG phase field was metastably extended away from its stoichiometry, as indicated by a systematic increase in lattice parameter with Y2O3 content. Although some Al2O3 enrichment was achieved, YAG appears to tolerate greater off-stoichiometry on the Y2O3-rich side. Possible defect structures accommodating the solubility extension were examined. Phase selection results indicate that compositional inhomogeneity is not the only reason behind the appearance of hexagonal YAlO3, which is frequently reported during YAG synthesis.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Powell, R.C.: Physics of Solid-State Laser Materials (Springer, New York, 1998).CrossRefGoogle Scholar
2. Shionoya, S. and Yen, W.M.: Phosphor Handbook (CRC Press, Boca Raton, FL, 1998).Google Scholar
3. Mah, T.I., Parthasarathy, T. and Kerans, R.J.: Processsing, microstructure, and strength of alumina-YAG polycrystals. J. Am. Ceram. Soc. 83, 2088 (2000).CrossRefGoogle Scholar
4. Pullar, R.C. and Bhattacharya, A.K.: The sintering behaviour, mechanical properties and creep resistance of aligned polycrystalline yttrium aluminium garnet (YAG) fibres, produced from an aqueous sol-gel precursor. J. Eur. Ceram. Soc. 19, 1747 (1999).CrossRefGoogle Scholar
5. Liu, Y., Zhang, Z.F., Halloran, J. and Laine, R.M.: Yttrium aluminum garnet fibers from metalloorganic precursors. J. Am. Ceram. Soc. 81, 629 (1998).CrossRefGoogle Scholar
6. Cho, S.Y., Kim, I.T. and Hong, K.S.: Microwave dielectric properties and applications of rare-earth aluminates. J. Mater. Res. 14, 114 (1999).CrossRefGoogle Scholar
7. Fabrichnaya, O., Seifert, H.J., Ludwig, T., Aldinger, F. and Navrotsky, A.: The assessment of thermodynamic parameters in the Al2O3-Y2O3 system and phase relations in the Y-Al-O system. Scand. J. Metall. 30, 175 (2001).CrossRefGoogle Scholar
8. Yasuda, H., Ohnaka, I., Mizutani, Y. and Waku, Y.: Selection of eutectic systems in Al2O3–Y2O3 ceramics. Sci. Tech. Adv. Mater. 2, 67 (2001).CrossRefGoogle Scholar
9. Caslavsky, J.L. and Viechnicki, D.J.: Melting behaviour and metastability of yttrium aluminium garnet (YAG) and YAlO3 determined by optical differential thermal analysis. J. Mater. Sci. 15, 1709 (1980).CrossRefGoogle Scholar
10. Nyman, M., Caruso, J., Hampden-Smith, M.J. and Kodas, T.T.: Comparison of solid-state and spray-pyrolysis synthesis of yttrium aluminate powders. J. Am. Ceram. Soc. 80, 1231 (1997).CrossRefGoogle Scholar
11. Hess, N.J., Maupin, G.D., Chick, L.A., Sunberg, D.S., McCreedy, D.E. and Armstrong, T.R.: Synthesis and crystallization of yttrium-aluminium garnet and related compounds. J. Mater. Sci. 29, 1873 (1994).CrossRefGoogle Scholar
12. Gowda, G.: Synthesis of yttrium aluminates by the sol-gel process. J. Mater. Sci. Lett. 5, 1029 (1986).CrossRefGoogle Scholar
13. Yamaguchi, O., Matui, K. and Shimizu, K.: Formation of YAlO3 with garnet structure. Ceram. Int. 11, 107 (1985).CrossRefGoogle Scholar
14. Yamaguchi, O., Takeoka, K., Hirota, K., Takano, H. and Hayashida, A.: Formation of alkoxy-derived yttrium-aluminium oxides. J. Mater. Sci. 27, 1261 (1992).CrossRefGoogle Scholar
15. Guo, X., Devi, P.S., Ravi, B.G., Parise, J.B., Sampath, S. and Hanson, J.C.: Phase evolution of yttium aluminium garnet (YAG) in a citrate-nitrate gel combustion process. J. Mater. Chem. 14, 1288 (2004).CrossRefGoogle Scholar
16. Ullal, C.K., Balasubramaniam, K.R., Gandhi, A.S. and Jayaram, V.: Non-equilibrium phase synthesis in Al2O3–Y2O3 by spray pyrolysis of nitrate precursors. Acta Mater. 49, 2691 (2001).CrossRefGoogle Scholar
17. Tachiwaki, T., Yoshinaka, M., Hirota, K., Ikegami, T. and Yamaguchi, O.: Novel synthesis of Y3Al5O12 (YAG) leading to transparent ceramics. Solid State Comm. 119, 603 (2001).CrossRefGoogle Scholar
18. Cinibulk, M.K.: Synthesis of yttrium aluminum garnet from a mixed-metal citrate precursor. J. Am. Ceram. Soc. 83, 1276 (2000).CrossRefGoogle Scholar
19. Li, J.G., Ikegami, T., Lee, J.H., Mori, T. and Yajima, Y.: Co-precipitation synthesis and sintering of yttrium aluminum garnet (YAG) powders: The effect of precipitant. J. Eur. Ceram. Soc. 20, 2395 (2000).CrossRefGoogle Scholar
20. Marchal, J., John, T., Baranwal, R., Hinklin, T. and Laine, R.M.: Yttrium aluminium garnet nanopowders produced by liquid-feed flame spray pyrolysis (LF-FSP) of metalloorganic precursors. Chem. Mater. 16, 822 (2004).CrossRefGoogle Scholar
21. Parukuttyamma, S.D., Margolis, J., Liu, H., Grey, C.P., Sampath, S., Herman, H. and Parise, J.B.: Yttrium aluminum garnet (YAG) films through a precursor plasma spraying technique. J. Am. Ceram. Soc. 84, 1906 (2001).CrossRefGoogle Scholar
22. Hay, R.S.: Phase transformations and microstructure evolution in sol-gel derived yttrium-aluminum garnet films. J. Mater. Res. 8, 578 (1993).CrossRefGoogle Scholar
23. Apte, P., Burke, H. and Pickup, H.: Synthesis of yttrium aluminum garnet by reverse strike precipitation. J. Mater. Res. 7, 706 (1992).CrossRefGoogle Scholar
24. Kakade, M.B., Ramanathan, S. and Ravindran, P.V.: Yttrium aluminum garnet powders by nitrate decomposition and nitrate-urea solution combustion reactions—a comparative study. J. Alloys Compd. 350, 123 (2003).CrossRefGoogle Scholar
25. Wang, H., Gao, L. and Niihara, K.: Synthesis of nanoscaled yttrium aluminum garnet powder by the co-precipitation method. Mater. Sci. Eng. A 288, 1 (2000).CrossRefGoogle Scholar
26. Messier, D.R. and Gazza, G.E.: Synthesis of MgAl2O4 and Y3Al5O12 by thermal decomposition of hydrated nitrate mixtures. Am. Ceram. Soc. Bull. 51, 692 (1972).Google Scholar
27. Stadler, B.J.H. and Oliver, M.: Sputter-deposited yttria-alumina thin films for optical waveguiding. J. Appl. Phys. 84, 93 (1998).CrossRefGoogle Scholar
28. Choudhury, S., Gandhi, A.S. and Jayaram, V.: Bulk, dense nanocrystalline yttrium aluminum garnet by consolidation of amorphous powders at low temperatures and high pressures. J. Am Ceram. Soc. 86, 247 (2003).CrossRefGoogle Scholar
29. Thangamani, N., Gandhi, A.S., Chokshi, A.H. and Jayaram, V.: Low temperature pressure consolidation of amorphous Al2O3– 15 mol% Y2O3. (unpublished).Google Scholar
30. Warshaw, I. and Roy, R.: Stable and metastable equilibria in the systems Y2O3–Al2O3 and Gd2O3–Fe2O3 . J. Am. Ceram. Soc. 42, 434 (1959).CrossRefGoogle Scholar
31. Levi, C.G.: Metastability and microstructure evolution in the synthesis of inorganics from precursors. Acta Mater. 46, 787 (1998).CrossRefGoogle Scholar
32. Cullity, B.D. and Stock, S.R.: Elements of X-ray Diffraction, 3rd ed. (Prentice Hall, Upper Saddle River, NJ, 2001) p. 363.Google Scholar
33. Bertaut, F. and Mareschal, J.: Physics of solids—a new type of hexagonal structure: AlTO3 (T = Y, Eu, Gd, Tb, Dy, Ho, Er). C.R. Hebd. Acad. Sci. 257, 867 (1963).Google Scholar
34. Inoue, M., Nishikawa, T., Nakamura, T. and Inui, T.: Glycothermal reaction of rare-earth acetate and iron acetylacetonate: Formation of hexagonal REFeO3 . J. Am. Ceram. Soc. 80, 2157 (1997).CrossRefGoogle Scholar
35. Isobe, M., Kimizuka, N., Nakamura, M. and Mohri, T.: Structure of YbMnO3 . Acta Crystallogr. C 47, 423 (1991).CrossRefGoogle Scholar
36. Kuklja, M.M.: Defects in yttrium aluminium perovskite and garnet crystals: Atomistic study. J. Phys.: Condens. Mater. 12, 2953 (2000).Google Scholar
37. Lupei, A., Stoicescu, C. and Lupei, V.: X-ray and spectral characterization of defects in garnets. J. Cryst. Growth 177, 207 (1997).CrossRefGoogle Scholar
38. Ashurov, M.K., Voronko, Y.K., Osiko, V.V., Sobol, A.A. and Timoshechkin, M.I.: Spectroscopic study of stoichiometry deviation in crystals with garnet structure. Phys. Status Solidi A 42, 101 (1977).CrossRefGoogle Scholar
39. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751 (1976).CrossRefGoogle Scholar
40. Carda, J., Monros, G., Esteve, V. and Amigo, J.M.: Cation distribution by powder x-ray diffraction in uvarovite–grossularite garnet solid solutions synthesized by the sol-gel method. J. Solid State Chem. 108, 24 (1994).CrossRefGoogle Scholar
41. Johnson, B. and Kriven, W.M.: Crystallization kinetics of yttrium aluminum garnet (Y3Al5O12). J. Mater. Res. 16, 1795 (2001).CrossRefGoogle Scholar
42. McMillan, P.F., Wilson, M. and Wilding, M.C.: Polyamorphism in aluminate liquids. J. Phys.: Condens. Mater. 15, 6105 (2003).Google Scholar
43. Powder Diffraction File (International Centre for Diffraction Data, Newtown Square, PA, 2002).Google Scholar