Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T01:36:12.105Z Has data issue: false hasContentIssue false

Phase formation and thermodynamics of unstable Cu–Cr alloys

Published online by Cambridge University Press:  31 January 2011

C. Michaelsen
Affiliation:
Institute of Materials Research, GKSS Research Center, 21502 Geesthacht, Germany
C. Gente
Affiliation:
Institute of Materials Research, GKSS Research Center, 21502 Geesthacht, Germany
R. Bormann
Affiliation:
Institute of Materials Research, GKSS Research Center, 21502 Geesthacht, Germany
Get access

Abstract

The quantitative description of highly nonequilibrium processes for the preparation of metastable and unstable phases requires the determination of the thermodynamic functions of the system under investigation. However, in systems such as Cu–Cr which are immiscible in the equilibrium states, the determination of the thermodynamic functions over the entire concentration range is often difficult if not impossible because reliable experimental data are not available for the metastable or unstable regime. The present paper demonstrates that such data can be obtained by a combination of thin film deposition techniques and differential scanning calorimetry. It is concluded that the phase formation in such thin films can be described in terms of the thermodynamics of the system, even when the heats of mixing are highly positive. The results indicate that models of the regular solution type still provide a reasonable description of the thermodynamic functions of such alloys.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Johnson, W. L., Prog. Mater. Sci. 30, 81 (1986).CrossRefGoogle Scholar
2.Bormann, R. and Zöltzer, K., Phys. Status Solidi (a) 131, 691 (1992).CrossRefGoogle Scholar
3.Gente, C., Oehring, M., and Bormann, R., Phys. Rev. B 48, 13 244 (1993).CrossRefGoogle Scholar
4.Klassen, T., Herr, U., and Averback, R. S., in Metastable Phases and Microstructures, edited by Bormann, R., Mazzone, G., Shull, R. D., Averback, R. S., and Ziolo, R. F. (Mater. Res. Soc. Symp. Proc. 400, Pittsburgh, PA, 1996), p. 25.Google Scholar
5.Klassen, T., Herr, U., and Averback, R. S., Acta Mater. (in press).Google Scholar
6.Ma, E. and Atzmon, M., Mater. Chem. Phys. 39, 249 (1995).CrossRefGoogle Scholar
7.Kneller, E., J. Appl. Phys. 33, 1355 (1962).CrossRefGoogle Scholar
8.Mader, S., Widmer, H., d'Heurle, F. M., and Nowick, A. S., Appl. Phys. Lett. 3, 201 (1963).CrossRefGoogle Scholar
9.Kneller, E., J. Appl. Phys. 35, 2210 (1965).CrossRefGoogle Scholar
10.Michaelsen, C., Philos. Mag. A72, 813 (1995).CrossRefGoogle Scholar
11.Zeng, K. and Hämäläinen, M., CALPHAD 19, 93 (1995).CrossRefGoogle Scholar
12.Murray, J. L., Metall. Trans. A15, 261 (1984).CrossRefGoogle Scholar
13.Chakrabarti, D. J. and Laughlin, D. E., Bull. Alloy Phase Diagrams 5, 59 (1984).CrossRefGoogle Scholar
14.Dirks, A. G. and van den Broek, J. J., J. Vac. Sci. Technol. A 3, 2618 (1985).CrossRefGoogle Scholar
15.Payne, A. P. and Clemens, B. M., J. Mater. Res. 7, 1370 (1992).CrossRefGoogle Scholar
16.Shen, T. D. and Koch, C. C., Acta Mater. 44, 753 (1996).CrossRefGoogle Scholar
17.Chen, L. C. and Spaepen, F., J. Appl. Phys. 69, 679 (1991).CrossRefGoogle Scholar
18.d'Heurle, F. M., J. Mater. Res. 3, 167 (1988).CrossRefGoogle Scholar
19.Hämäläinen, M., Jääskeläinen, K., Luoma, R., Taskinen, P., Teppo, O., and Vanninen, M., CALPHAD 14, 125 (1990).CrossRefGoogle Scholar
20.Dinsdale, A. T., SGTE Data for Pure Elements, NPL Report DMA(A) 195 (1989).Google Scholar