Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T12:40:30.892Z Has data issue: false hasContentIssue false

Persistence of 5:3 plates in RE5(SixGe1-x)4 alloys

Published online by Cambridge University Press:  03 March 2011

O. Ugurlu*
Affiliation:
Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011; and Ames Laboratory (DOE), Iowa State University, Ames, Iowa 50011-3020
L.S. Chumbley
Affiliation:
Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011; and Ames Laboratory (DOE), Iowa State University, Ames, Iowa 50011-3020
C.R. Fisher
Affiliation:
Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011; and Ames Laboratory (DOE), Iowa State University, Ames, Iowa 50011-3020
*
a) Address all correspondence to this author. e-mail: ozan@iastate.edu
Get access

Abstract

Studies of RE5(SixGe1-x)4 alloys, where RE equals rare earth, have revealed a second-phase having a thin-plate morphology in essentially every alloy examined, independent of exact composition and matrix crystal structure. Identified as having a composition approximating Gd5(SixGe1-x)3 and a hexagonal crystal structure in the Gd-based system, it has been suggested that the observed thin-plate second phases seen in this family of rare earth alloys are all most likely of the form RE5(SixGe1-x)3. A number of interesting observations suggest that the formation of these second-phase plates is somewhat unusual. The purpose of this article is to investigate the stability of this second phase in Gd- and Er-based compounds. The stability was investigated as a function of thermal cycling and large-scale composition fluctuations. The results of scanning and transmission electron microscopy (SEM, TEM) studies indicate that the RE5(SixGe1-x)3 phase is extremely stable once it forms in a RE5(SixGe1-x)4 matrix.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Morellon, L., Blasco, J., Algarabel, P.A., Ibarra, M.R.: Nature of the first-order antiferromagnetic-ferromagnetic transition in the Ge-rich magnetocaloric compounds Gd5(SixGe1-x)4. Phys. Rev. B 62, 1022 (2000).CrossRefGoogle Scholar
2.Morellon, L., Algarabel, P.A., Ibarra, M.R., Blasco, J., Garcia-Landa, B., Arnold, Z., Albertini, F.: Magnetic-field-induced structural phase transition in Gd5(Si1.8Ge2.2). Phys. Rev. B 58, R14721 (1998).CrossRefGoogle Scholar
3.Levin, E.M., Pecharsky, V.K., Gschneidner, K.A. Jr.: Magnetic-field and temperature dependencies of the electrical resistance near the magnetic and crystallographic first-order phase transition of Gd5(Si2Ge2). Phys. Rev. B 60, 7993 (1999).CrossRefGoogle Scholar
4.Levin, E.M., Pecharsky, V.K., Gschneidner, K.A.J., Tomlinson, P.: Magnetic field and temperature-induced first-order transition in Gd5 (Si1.5Ge2.5): A study of the electrical resistance behavior. J. Magn. Magn. Mater. 210, 181 (2000).CrossRefGoogle Scholar
5.Morellon, L., Stankiewicz, J., Garcia-Landa, B., Algarabel, P.A., Ibarra, M.R.: Giant magnetoresistance near the magnetostructural transition in Gd5(Si1.8Ge2.2). Appl. Phys. Lett. 73, 3462 (1998).CrossRefGoogle Scholar
6.Pecharsky, V.K., Gschneidner, K.A. Jr.: Giant magnetocaloric effect in Gd5(Si2Ge2). Phys. Rev. Lett. 78, 4494 (1997).CrossRefGoogle Scholar
7.Pecharsky, V.K., Gschneidner, K.A. Jr.: Phase relationships and crystallography in the pseudobinary system Gd5Si4–Gd5Ge4. J Alloys Compd. 260, 98 (1997).CrossRefGoogle Scholar
8.Ugurlu, O., Chumbley, L.S., Schlagel, D.L., Lograsso, T.A., Pecharsky, A.O. Characterization of R5(SixGe1-x)4 alloys, where R is Gd, Tb, Dy and Er: TMS Light Metals (134th TMS Annual Meeting, San Francisco, CA, 2005), p. 1181.Google Scholar
9.Ugurlu, O., Chumbley, L.S., Schlagel, D.L., Lograsso, T.A., Tsokol, A.O.: Identification of thin plates seen in R5(SixGe1-x)4 alloys, where R is Gd, Tb, Dy, and Er. Scripta Mater. 55, 373 (2005).CrossRefGoogle Scholar
10.Meyers, J.S., Chumbley, L.S., Laabs, F., Pecharsky, A.O.: Determination of phases in as prepared Gd5(SixGe1-x)4 where x = 1/2. Scripta Mater. 47, 509 (2002).CrossRefGoogle Scholar
11.Szade, J., Skorek, G., Winiarski, A.: Surface structure of Gd5(Si,Ge)4 crystals. J. Cryst. Growth 205, 289 (1999).CrossRefGoogle Scholar
12.Ugurlu, O., Chumbley, L.S., Lograsso, T.A., Schlagel, D.L.: Characterization of an atypical Widmanstatten structure in Gd5Si3Ge2 alloys. Acta Mater. 53, 3525 (2005).CrossRefGoogle Scholar
13.Ugurlu, O., Chumbley, L.S., Schlagel, D.L., Lograsso, T.A.: On the formation of atypical Widmanstaetten plates in the Gd5(Si2Ge1-x)4 system. Acta Mater. 54, 1211 (2005).CrossRefGoogle Scholar
14.Mozharivskyj, Y., Pecharsky, A.O., Pecharsky, V.K., Miller, G.J.: On the high-temperature phase transition of Gd5Si2Ge2. J. Am. Chem. Soc. 127, 317 (2005).CrossRefGoogle ScholarPubMed
15. Ames Laboratory Materials Preparation Center (MPC), Ames, IA.Google Scholar
16.Luzan, S.P., Listovnichii, V.E., Buyanov, Y.I., Martsenyuk, P.S.: Phase diagram of the binary erbium-silicon system and physical properties of erbium silicides up to 1050 °C. J. Alloys Compd. 239, 77 (1996).CrossRefGoogle Scholar
17.Pecharsky, V.K., Gschneidner, K.A.: Gd5(SixGe1-x)4: An extremum material. Adv. Mater. 13, 683 (2001).3.0.CO;2-O>CrossRefGoogle Scholar
18.Ugurlu, O., Chumbley, L.S., Schlagel, D.L., Lograsso, T.A.: On the formation of atypical Widmanstaetten plates in the Gd5(Si2Ge1-x)4 system. Acta Mater. 54, 1211 (2006).CrossRefGoogle Scholar
19.Meyers, J.S., Chumbley, S., Laabs, F., Pecharsky, A.O.: TEM analysis of Gd5(SixGe1-x)4, where x = 1/2. Acta Mater. 51, 61 (2003).CrossRefGoogle Scholar
20.Meyers, J.S., Chumbley, L.S., Choe, W., Miller, G.J.: Microstructural analysis of twinned b-Gd5Si2Ge2. Phys. Rev. B 66, 012106 (2002).CrossRefGoogle Scholar