Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T10:47:21.288Z Has data issue: false hasContentIssue false

Oxygen diffusion in La2−x Srx CuO4−y

Published online by Cambridge University Press:  31 January 2011

J. L. Routbort
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
S. J. Rothman
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
B. K. Flandermeyer
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
L. J. Nowicki
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
J. E. Baker
Affiliation:
Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801
Get access

Abstract

Diffusion of 18O in the superconductor La2−x Srx CuO4−y has been measured as a function of x (0 to 0.20) between 300 and 500°C at an oxygen partial pressure of ≍ 1 atm. Concentration profiles were obtained using a secondary ion mass spectrometer. The diffusion coefficient decreases with increasing Sr additions from 0.1 to 0.2, primarily because of an increase in activation energy. This result, which is contradictory to the expectation that the diffusion coefficient should increase with increasing vacancy concentration caused by the added Sr, can be explained if oxygen vacancies are bound to Sr clusters. Measurements on samples with x = 0 or 0.05 were unsuccessful, probably because of porosity.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Cava, R. J.Dover, R. B. van, Batlogg, B. and Rietman, E. A.Phys. Rev. Lett. 58, 408 (1987).Google Scholar
2Dover, R. B. van, Cava, R. J.Batlogg, B. and Rietman, E. A.Phys. Rev. B35, 5337 (1987).Google Scholar
3Jorgensen, J. D.Schuttler, H.-B.Hinks, D. G.Capone, D. W. II , Zhang, K.Brodsky, M. B. and Scalapino, D. J.Phys. Rev. Lett. 58, 1024 (1987).CrossRefGoogle Scholar
4Kanbe, S.Kishio, K.Kitazawa, K.Fueki, K.Takagi, H. and Tanaka, S. Chem. Lett (to be published).Google Scholar
5Jorgensen, J. D.Veal, B. W.Kwok, W. K.Crabtree, G. W.Umezawa, A.Nowicki, L. J. and Paulikas, A. P.Phys. Rev. B36, 5731 (1987).Google Scholar
6Gallagher, P. K.O'Bryan, H. M., Sunshine, S. A. and Murphy, D. W.Mater. Res. Bull. 22, 995 (1987).CrossRefGoogle Scholar
7Crabtree, G. W.Downey, J. W.Flandermeyer, B. K.Jorgensen, J. D.Klippert, T. E.Kupperman, D. S.Kwok, W. K.Lam, D. J.Mitchell, A. W.McKale, A. G.Nevitt, M. V.Nowicki, L. J.Paulikas, A. P.Poeppel, R. B.Rothman, S. J.Routbort, J. L.Singh, J. P.Sowers, C. H.Umezawa, A. and Veal, B. W.Adv. Ceram. Mater. 2, 444 (1987).Google Scholar
8Smedskjaer, L. C.Routbort, J. L.Flandermeyer, B. K.Roth-man, S. J., Legnini, D. G. and Baker, J. E.Phys. Rev. B36, 3903 (1987).Google Scholar
9Nguyen, N.Choisnet, J.Hervieu, M. and Raveau, B.J. Solid State Chem. 39, 120 (1981).CrossRefGoogle Scholar
10Pechini, M. U.S. Patent No. 3,300,697 (July 1967).CrossRefGoogle Scholar
11Routbort, J. L. and Rothman, S. J.J. Phys. Chem. Solids 47, 993 (1986).CrossRefGoogle Scholar
12Crank, J.The Mathematics of Diffusion (Oxford U.P., London, 1956), p. 34.Google Scholar
13Routbort, J. L. and Rothman, S. J.Diff. Defect Data 40, 1 (1985).Google Scholar
14Hinks, D. G.Jorgensen, J. D.Capone, D. W. II , and Zhang, K. (private communication, 1987).Google Scholar
15Er-Rakho, L., Michel, C.Provost, J. and Raveau, B.J. Solid State Chem. 37, 151 (1981).CrossRefGoogle Scholar
16Hohnke, D. K., in Fast Ion Transport in Solids, edited by Vashishta, P., Mundy, J. N. and Shenoy, G. (Elsevier, New York, 1979), pp. 669672.Google Scholar
17Murray, A. D.Murch, G. E. and Catlow, C. R. A.Solid State Ion. 18/19, 196 (1986).CrossRefGoogle Scholar