Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-27T00:08:53.680Z Has data issue: false hasContentIssue false

Optical biosensors utilizing graphene and functional DNA molecules

Published online by Cambridge University Press:  03 April 2017

Sepehr Manochehry
Affiliation:
Department of Biochemistry and Biomedical Sciences, Health Science Centre, McMaster University, Hamilton, Ontario L8S 4K1
Meng Liu
Affiliation:
Department of Biochemistry and Biomedical Sciences, Health Science Centre, McMaster University, Hamilton, Ontario L8S 4K1
Dingran Chang
Affiliation:
Department of Biochemistry and Biomedical Sciences, Health Science Centre, McMaster University, Hamilton, Ontario L8S 4K1
Yingfu Li*
Affiliation:
Department of Biochemistry and Biomedical Sciences, Health Science Centre, McMaster University, Hamilton, Ontario L8S 4K1
*
a) Address all correspondence to this author. e-mail: liying@mcmaster.ca
Get access

Abstract

Single-stranded DNA molecules capable of molecular recognition and catalysis can now be routinely generated via the technique of in vitro selection. When coupled with adequate signal transduction modes, these synthetic functional DNA species represent a potential paradigm shift in the research and development of biosensors to meet the challenges of our rapidly changing world. Coupling functional DNA molecules with graphene materials for the design of optical biosensors has become an exciting research area in recent years, mostly because graphene materials are not only excellent quenchers of fluorescence, but they also display considerably different affinities for free and ligand-bound functional DNA molecules. We will discuss notable progress in this area in this mini-review by highlighting representative studies.

Type
Invited Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Venkatesan Renugopalakrishnan

References

REFERENCES

Liu, J., Cao, Z., and Lu, Y.: Functional nucleic acid sensors. Chem. Rev. 109, 1948 (2009).CrossRefGoogle ScholarPubMed
Navani, N.K. and Li, Y.: Nucleic acid aptamers and enzymes as sensors. Curr. Opin. Chem. Biol. 10, 272 (2006).Google Scholar
Chen, D., Feng, H., and Li, J.H.: Graphene oxide: Preparation, functionalization, and electrochemical applications. Chem. Rev. 112, 6027 (2012).CrossRefGoogle ScholarPubMed
Liu, Y., Dong, X., and Chen, P.: Biological and chemical sensors based on graphene materials. Chem. Soc. Rev. 41, 2283 (2012).Google Scholar
Morales-Narváez, E. and Merkoci, A.: Graphene oxide as an optical biosensing platform. Adv. Mater. 24, 3298 (2012).Google Scholar
Loh, K.P., Bao, Q., Eda, G., and Chhowalla, M.: Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2, 1015 (2010).Google Scholar
Wang, Y., Li, Z., Wang, J., Li, J., and Lin, Y.: Graphene and graphene oxide: Biofunctionalization and applications in biotechnology. Trends Biotechnol. 29, 205 (2011).CrossRefGoogle Scholar
Cech, T.R.: The chemistry of self-splicing RNA and RNA enzymes. Science 236, 1532 (1987).CrossRefGoogle ScholarPubMed
Hermann, T. and Patel, D.J.: Adaptive recognition by nucleic acid aptamers. Science 287, 820 (2000).Google Scholar
Ponce-Salvatierra, A., Wawrzyniak-Turek, K., Steuerwald, U., Hobartner, C., and Pena, V.: Crystal structure of a DNA catalyst. Nature 529, 231 (2016).Google Scholar
Tuerk, C. and Gold, L.: Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505 (1990).CrossRefGoogle ScholarPubMed
Ellington, A.D. and Szostak, J.W.: In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818 (1990).CrossRefGoogle ScholarPubMed
Robertson, D.L. and Joyce, G.F.: Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344, 467 (1990).Google Scholar
Mok, W. and Li, Y.: Recent progress in nucleic acid aptamer-based biosensors and bioassays. Sensors 8, 7050 (2008).Google Scholar
Wang, Y., Li, Z., Weber, T.J., Hu, D., Lin, C.T., Li, J., and Lin, Y.: In situ live cell sensing of multiple nucleotides exploiting DNA/RNA aptamers and graphene oxide nanosheets. Anal. Chem. 85, 6775 (2013).Google Scholar
Ling, K., Jiang, H., Li, Y., Tao, X., Qiu, C., and Li, F.R.: A self-assembling RNA aptamer-based graphene oxide sensor for the turn-on detection of theophylline in serum. Biosens. Bioelectron 86, 8 (2016).Google Scholar
Bock, L.C., Griffin, L.C., Latham, J.A., Vermaas, E.H., and Toole, J.J.: Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355, 564 (1992).Google Scholar
Wang, K.Y., Krawczyk, S.H., Bischofberger, N., Swaminathan, S., and Bolton, P.H.: The tertiary structure of a DNA aptamer which binds to and inhibits thrombin determines activity. Biochemistry 32, 11285 (1993).Google Scholar
Macaya, R.F., Schultze, P., Smith, F.W., Roe, J.A., and Feigon, J.: Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution. Proc. Natl. Acad. Sci. U. S. A. 90, 3745 (1993).Google Scholar
Padmanabhan, K., Padmanabhan, K.P., Ferrara, J.D., Sadler, J.E., and Tulinsky, A.: The structure of alpha-thrombin inhibited by a 15-mer single-stranded DNA aptamer. J. Biol. Chem. 268, 17651 (1993).Google Scholar
Huizenga, D.E. and Szostak, J.W.: A DNA aptamer that binds adenosine and ATP. Biochemistry 34, 656 (1995).CrossRefGoogle ScholarPubMed
Lin, C.H. and Patel, D.J.: Structural basis of DNA folding and recognition in an AMP-DNA aptamer complex: Distinct architectures but common recognition motifs for DNA and RNA aptamers complexed to AMP. Chem. Biol. 4, 817 (1997).CrossRefGoogle Scholar
Breaker, R.R. and Joyce, G.F.: A DNA enzyme that cleaves RNA. Chem. Biol. 1, 223 (1994).CrossRefGoogle ScholarPubMed
Santoro, S.W. and Joyce, G.F.: A general purpose RNA-cleaving DNA enzyme. Proc. Natl. Acad. Sci. U. S. A. 94, 4262 (1997).Google Scholar
Cruz, R.P., Withers, J.B., and Li, Y.: Dinucleotide junction cleavage versatility of 8-17 deoxyribozyme. Chem. Biol. 11, 57 (2004).Google Scholar
Schlosser, K. and Li, Y.: A versatile endoribonuclease mimic made of DNA: Characteristics and applications of the 8-17 RNA-cleaving DNAzyme. ChemBioChem 11, 866 (2010).Google Scholar
Carmi, N., Balkhi, S.R., and Breaker, R.R.: Cleaving DNA with DNA. Proc. Natl. Acad. Sci. U. S. A. 95, 2233 (1998).Google Scholar
Huang, P.J.J., Lin, J., Cao, J., Vazin, M., and Liu, J.: Ultrasensitive DNAzyme beacon for lanthanides and metal speciation. Anal. Chem. 86, 1816 (2014).CrossRefGoogle ScholarPubMed
Torabi, S.F., Wu, P., McGhee, C.E., Chen, L., Hwang, K., Zheng, N., Cheng, J., and Lu, Y.: In vitro selection of a sodium-specific DNAzyme and its application in intracellular sensing. Proc. Natl. Acad. Sci. U. S. A. 112, 5903 (2015).CrossRefGoogle ScholarPubMed
Saran, R. and Liu, J.: A silver DNAzyme. Anal. Chem. 88, 4014 (2016).Google Scholar
Tram, K., Kanda, P., and Li, Y.: Lighting up RNA-cleaving DNAzymes for biosensing. J. Nucleic Acids 2012, 958683 (2012).CrossRefGoogle ScholarPubMed
Ali, M.M., Aguirre, S.D., Lazim, H., and Li, Y.: Fluorogenic DNAzyme probes as bacterial indicators. Angew. Chem., Int. Ed. 50, 3751 (2011).Google Scholar
Shen, Z., Wu, Z., Chang, D., Zhang, W., Tram, K., Lee, C., Kim, P., Salena, B.J., and Li, Y.: A catalytic DNA activated by a specific strain of bacterial pathogen. Angew. Chem., Int. Ed. 55, 2431 (2016).Google Scholar
Hong, B.J., An, Z., Compton, O.C., and Nguyen, S.T.: Tunable biomolecular interaction and fluorescence quenching ability of graphene oxide: Application to “turn-on” DNA sensing in biological media. Small 8, 2469 (2012).Google Scholar
Gowtham, S., Scheicher, R.H., Ahuja, R., Pandey, R., and Karna, S.P.: Physisorption of nucleobases on graphene: Density-functional calculation. Phys. Rev. B: Condens. Matter Mater. Phys. 76, 033401 (2007).Google Scholar
Varghese, N., Mogera, U., Govindaraj, A., Das, A., Maiti, P.K., Sood, A.K., and Rao, C.N.R.: Binding of DNA nucleobases and nucleosides with graphene. Chem. Phys. Chem. 10, 206 (2009).CrossRefGoogle ScholarPubMed
Green, L.S., Jellinek, D., Jenison, R., Östman, A., Heldin, C.H., and Janjic, N.: Inhibitory DNA ligands to platelet-derived growth factor B-chain. Biochemistry 35, 14413 (1996).CrossRefGoogle ScholarPubMed
Wu, M., Kempaiah, R., Huang, P.J., Maheshwari, V., and Liu, J.: Adsorption and desorption of DNA on graphene oxide studied by fluorescently labeled oligonucleotides. Langmuir 27, 2731 (2011).Google Scholar
Lei, H., Mi, L., Zhou, X., Chen, J., Hu, J., Guo, S., and Zhang, Y.: Adsorption of double-stranded DNA to graphene oxide preventing enzymatic digestion. Nanoscale 3, 3888 (2011).Google Scholar
Liu, B., Sun, Z., Zhang, X., and Liu, J.: Mechanisms of DNA sensing on graphene oxide. Anal. Chem. 85, 7987 (2013).CrossRefGoogle ScholarPubMed
Park, J.S., Goo, N.I., and Kim, D.E.: Mechanism of DNA adsorption and desorption on graphene oxide. Langmuir 30, 12587 (2014).Google Scholar
Liu, Z., Liu, B., Ding, J., and Liu, J.: Fluorescent sensors using DNA-functionalized graphene oxide. Anal. Bioanal. Chem. 406, 6885 (2014).Google Scholar
Liu, B., Salgado, S., Maheshwari, V., and Liu, J.: DNA adsorbed on graphene and graphene oxide: Fundamental interactions, desorption and applications. Curr. Opin. Colloid Interface Sci. 26, 41 (2016).Google Scholar
Li, M.H., Wang, Y.S., Cao, J.X., Chen, S.H., Tang, X., Wang, X.F., Zhu, Y.F., and Huang, Y.Q.: Ultrasensitive detection of uranyl by graphene oxide-based background reduction and RCDzyme-based enzyme strand recycling signal amplification. Biosens. Bioelectron. 72, 294 (2015).Google Scholar
Dong, H., Gao, W., Yan, F., Ji, H., and Ju, H.: Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Anal. Chem. 82, 5511 (2010).Google Scholar
Liu, X., Wang, F., Aizen, R., Yehezkeli, O., and Willner, I.: Graphene oxide/nucleic-acid-stabilized silver nanoclusters: Functional hybrid materials for optical aptamer sensing and multiplexed analysis of pathogenic DNAs. J. Am. Chem. Soc. 135, 11832 (2013).Google Scholar
Liu, C., Wang, Z., Jia, H., and Li, Z.: Efficient fluorescence resonance energy transfer between upconversion nanophosphors and graphene oxide: A highly sensitive biosensing platform. Chem. Commun. 47, 4661 (2011).CrossRefGoogle ScholarPubMed
Swathi, R.S. and Sebastian, K.L.: Long range resonance energy transfer from a dye molecule to graphene has (distance)−4 dependence. J. Chem. Phys. 130, 086101 (2009).CrossRefGoogle ScholarPubMed
Liu, M., Zhao, H.M., Quan, X., Chen, S., and Fan, X.F.: Distance independent quenching of quantum dots by nanoscale-graphene in self-assembled sandwich immunoassay. Chem. Commun. 46, 7909 (2010).CrossRefGoogle ScholarPubMed
Zhao, X.H., Kong, R.M., Zhang, X.B., Meng, H.M., Liu, W.N., Tan, W., Shen, G.L., and Yu, R.Q.: Graphene–DNAzyme based biosensor for amplified fluorescence “turn-on” detection of Pb2+ with a high selectivity. Anal. Chem. 83, 5062 (2011).Google Scholar
Liu, M., Zhao, H., Chen, S., Yu, H., Zhang, Y., and Quan, X.: Label-free fluorescent detection of Cu(II) ions based on DNA cleavage-dependent graphene-quenched DNAzymes. Chem. Commun. 47, 7749 (2011).Google Scholar
Liu, M., Zhao, H., Chen, S., Yu, H., Zhang, Y., and Quan, X.: A “turn-on” fluorescent copper biosensor based on DNA cleavage-dependent graphene-quenched DNAzyme. Biosens. Bioelectron. 26, 4111 (2011).CrossRefGoogle Scholar
Wang, Y., Li, Z., Hu, D., Lin, C.T., Li, J., and Lin, Y.: Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J. Am. Chem. Soc. 132, 9274 (2010).Google Scholar
Sheng, L., Ren, J., Miao, Y., Wang, J., and Wang, E.: PVP-coated graphene oxide for selective determination of ochratoxin A via quenching fluorescence of free aptamer. Biosens. Bioelectron. 26, 3494 (2011).Google Scholar
Chang, H., Tang, L., Wang, Y., Jiang, J., and Li, J.: Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Anal. Chem. 82, 2341 (2010).Google Scholar
Pu, Y., Zhu, Z., Han, D., Liu, H., Liu, J., Liao, J., Zhang, K., and Tan, W.: Insulin-binding aptamer-conjugated graphene oxide for insulin detection. Analyst 136, 4138 (2011).Google Scholar
He, Y., Lin, Y., Tang, H., and Pang, D.: A graphene oxide-based fluorescent aptasensor for the turn-on detection of epithelial tumor marker mucin 1. Nanoscale 4, 2054 (2012).CrossRefGoogle ScholarPubMed
Zhuang, H.L., Zhen, S.J., Wang, J., and Huang, C.Z.: Sensitive detection of prion protein through long range resonance energy transfer between graphene oxide and molecular aptamer beacon. Anal. Methods 5, 208 (2013).Google Scholar
Huang, Y., Chen, X., Xia, Y., Wu, S., Duan, N., Ma, X., and Wang, Z.: Selection, identification and application of a DNA aptamer against Staphylococcus aureus enterotoxin A. Anal. Methods 6, 690 (2014).Google Scholar
Huang, Y., Chen, X., Duan, N., Wu, S., Wang, Z., Wei, X., and Wang, Y.: Selection and characterization of DNA aptamers against Staphylococcus aureus enterotoxin C1. Food Chem. 166, 623 (2015).Google Scholar
Duan, N., Ding, X., He, L., Wu, S., Wei, Y., and Wang, Z.: Selection, identification and application of a DNA aptamer against Listeria monocytogenes. Food Control 33, 239 (2013).CrossRefGoogle Scholar
Wu, S., Duan, N., Ma, X., Xia, Y., Wang, H., Wang, Z., and Zhang, Q.: Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins. Anal. Chem. 84, 6263 (2012).Google Scholar
Kurt, H., Yüce, M., Hussain, B., and Budak, H.: Dual-excitation upconverting nanoparticle and quantum dot aptasensor for multiplexed food pathogen detection. Biosens. Bioelectron. 81, 280 (2016).Google Scholar
Liu, J., Wang, C., Jiang, Y., Hu, Y., Li, J., Yang, S., Li, Y., Yang, R., Tan, W., and Huang, C.Z.: Graphene signal amplification for sensitive and real-time fluorescence anisotropy detection of small molecules. Anal. Chem. 85, 1424 (2013).Google Scholar
Liu, Q., Xu, X., Zhang, L., Luo, X., and Liang, Y.: Assembly of single-stranded polydeoxyadenylic acid and β-glucan probed by the sensing platform of graphene oxide based on the fluorescence resonance energy transfer and fluorescence anisotropy. Analyst 138, 2661 (2013).Google Scholar
Yu, Y., Liu, Y., Zhen, S.J., and Huang, C.Z.: A graphene oxide enhanced fluorescence anisotropy strategy for DNAzyme-based assay of metal ions. Chem. Commun. 49, 1942 (2013).Google Scholar
Rajendran, M. and Ellington, A.D.: Selection of fluorescent aptamer beacons that light up in the presence of zinc. Anal. Bioanal. Chem. 390, 1067 (2008).Google Scholar
Wu, Y., Zhan, S., Wang, L., and Zhou, P.: Selection of a DNA aptamer for cadmium detection based on cationic polymer mediated aggregation of gold nanoparticles. Analyst 139, 1550 (2014).Google Scholar
Apiwat, C., Luksirikul, P., Kankla, P., Pongprayoon, P., Treerattrakoon, K., Paiboonsukwong, K., Fucharoen, S., Dharakul, T., and Japrung, D.: Graphene based aptasensor for glycated albumin in diabetes mellitus diagnosis and monitoring. Biosens. Bioelectron. 82, 140 (2016).Google Scholar
Wang, Y., Li, Z., Hu, D., Lin, C.T., Li, J., and Lin, Y.: Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J. Am. Chem. Soc. 132, 9274 (2010).Google Scholar
Tan, X., Chen, T., Xiong, X., Mao, Y., Zhu, G., Yasun, E., Li, C., Zhu, Z., and Tan, W.: Semi-quantification of ATP in live cells using nonspecific desorption of DNA from graphene oxide as internal reference. Anal. Chem. 84, 8622 (2012).Google Scholar
Huang, P.J. and Liu, J.: Molecular beacon lighting up on graphene oxide. Anal. Chem. 84, 4192 (2012).Google Scholar
Liu, Z., Chen, S., Liu, B., Wu, J., Zhou, Y., He, L., Ding, J., and Liu, J.: Intracellular detection of ATP using an aptamer beacon covalently linked to graphene oxide resisting nonspecific probe displacement. Anal. Chem. 86, 12229 (2014).Google Scholar
Song, J., Lau, P.S., Liu, M., Shuang, S., Dong, C., and Li, Y.: A general strategy to create RNA aptamer sensors using “regulated” graphene oxide adsorption. ACS Appl. Mater. Interfaces 6, 21806 (2014).Google Scholar
Furukawa, K., Ueno, Y., Tamechika, E., and Hibino, H.: Protein recognition on a single graphene oxide surface fixed on a solid support. J. Mater. Chem. B 1, 1119 (2013).Google Scholar
Ueno, Y., Furukawa, K., Matsuo, K., Inoue, S., Hayashi, K., and Hibino, H.: Molecular design for enhanced sensitivity of a FRET aptasensor built on the graphene oxide surface. Chem. Commun. 49, 10346 (2013).Google Scholar
Ueno, Y., Furukawa, K., Matsuo, K., Inoue, S., Hayashi, K., and Hibino, H.: On-chip graphene oxide aptasensor for multiple protein detection. Anal. Chim. Acta 866, 1 (2015).Google Scholar
Liang, L., Su, M., Li, L., Lan, F., Yang, G., Ge, S., Yu, J., and Song, X.: Aptamer-based fluorescent and visual biosensor for multiplexed monitoring of cancer cells in microfluidic paper-based analytical devices. Sens. Actuators, B 229, 347 (2016).Google Scholar
Zuo, P., Li, X., Dominguez, D.C., and Ye, B.C.: A PDMS/paper/glass hybrid microfluidic biochip integrated with aptamer-functionalized graphene oxide nano-biosensors for one-step multiplexed pathogen detection. Lab Chip 13, 3921 (2013).Google Scholar
He, J.L., Wu, Z.S., Zhou, H., Wang, H.Q., Jiang, J.H., Shen, G.L., and Yu, R.Q.: Fluorescence aptameric sensor for strand displacement amplification detection of cocaine. Anal. Chem. 82, 1358 (2010).Google Scholar
Qiu, L.P., Wu, Z.S., Shen, G.L., and Yu, R.Q.: Highly sensitive and selective bifunctional oligonucleotide probe for homogeneous parallel fluorescence detection of protein and nucleotide sequence. Anal. Chem. 83, 3050 (2011).Google Scholar
Huang, J., Chen, Y., Yang, L., Zhu, Z., Zhu, G., Yang, X., Wang, K., and Tan, W.: Amplified detection of cocaine based on strand-displacement polymerization and fluorescence resonance energy transfer. Biosens. Bioelectron. 28, 450 (2011).Google Scholar
Hu, K., Liu, J., Chen, J., Huang, Y., Zhao, S., Tian, J., and Zhang, G.: An amplified graphene oxide-based fluorescence aptasensor based on target-triggered aptamer hairpin switch and strand-displacement polymerization recycling for bioassays. Biosens. Bioelectron. 42, 598 (2013).CrossRefGoogle ScholarPubMed
Li, C.H., Xiao, X., Tao, J., Wang, D.M., Huang, C.Z., and Zhen, S.J.: A graphene oxide-based strand displacement amplification platform for ricin detection using aptamer as recognition element. Biosens. Bioelectron. 91, 149 (2017).Google Scholar
Lu, C.H., Li, J., Lin, M.H., Wang, Y.W., Yang, H.H., Chen, X., and Chen, G.N.: Amplified aptamer-based assay through catalytic recycling of the analyte. Angew. Chem., Int. Ed. 49, 8454 (2010).Google Scholar
Su, C., Liu, C., Chen, J., Chen, Z., and He, Z.: Simultaneous determination of zeatin and systemin by coupling graphene oxide-protected aptamers with catalytic recycling of DNase I. Sens. Actuators, B 230, 442 (2016).Google Scholar
Guo, S., Yang, F., Zhang, Y., Ning, Y., Yao, Q., and Zhang, G.J.: Amplified fluorescence sensing of miRNA by combination of graphene oxide with duplex-specific nuclease. Anal. Methods 6, 3598 (2014).Google Scholar
Liu, X., Aizen, R., Freeman, R., Yehezkeli, O., and Willner, I.: Multiplexed aptasensors and amplified DNA sensors using functionalized graphene oxide: Application for logic gate operations. ACS Nano 6, 3553 (2012).Google Scholar
Chen, C. and Li, B.: Graphene oxide-based homogenous biosensing platform for ultrasensitive DNA detection based on chemiluminescence resonance energy transfer and exonuclease III-assisted target recycling amplification. J. Mater. Chem. B 1, 2476 (2013).Google Scholar
Cui, L., Chen, Z., Zhu, Z., Lin, X., Chen, X., and Yang, C.J.: Stabilization of ssRNA on graphene oxide surface: An effective way to design highly robust RNA probes. Anal. Chem. 85, 2269 (2013).Google Scholar
Chen, C., Zhao, J., Jiang, J., and Yu, R.: A novel exonuclease III-aided amplification assay for lysozyme based on graphene oxide platform. Talanta 101, 357 (2012).CrossRefGoogle ScholarPubMed
Wu, S., Duan, N., Ma, X., Xia, Y., Wang, H., and Wang, Z.: A highly sensitive fluorescence resonance energy transfer aptasensor for staphylococcal enterotoxin B detection based on exonuclease-catalyzed target recycling strategy. Anal. Chim. Acta 782, 59 (2013).Google Scholar
Xiao, K., Liu, J., Chen, H., Zhang, S., and Kong, J.: A label-free and high-efficient GO-based aptasensor for cancer cells based on cyclic enzymatic signal amplification. Biosens. Bioelectron. 91, 76 (2017).CrossRefGoogle ScholarPubMed
Liu, M., Song, J., Shuang, S., Dong, C., Brennan, J.D., and Li, Y.: A graphene-based biosensing platform based on the release of DNA probes and rolling circle amplification. ACS Nano 8, 5564 (2014).Google Scholar
Jahanshahi-Anbuhi, S., Pennings, K., Leung, V., Liu, M., Carrasquilla, C., Kannan, B., Li, Y., Pelton, R., Brennan, J.D., and Filipe, C.D.: Pullulan encapsulation of labile biomolecules to give stable bioassay tablets. Angew. Chem., Int. Ed. 53, 6155 (2014).Google Scholar
Liu, M., Hui, C.Y., Zhang, Q., Gu, J., Kannan, B., Jahanshahi-Anbuhi, S., Filipe, C.D., Brennan, J.D., and Li, Y.: Target-induced and equipment-free DNA amplification with a simple paper device. Angew. Chem., Int. Ed. 55, 2709 (2016).Google Scholar
Carrasquilla, C., Little, J.R., Li, Y., and Brennan, J.D.: Patterned paper sensors printed with long-chain DNA aptamers. Chem. –Eur. J. 21, 7369 (2015).Google Scholar
Kannan, B., Jahanshahi-Anbuhi, S., Pelton, R.H., Li, Y., Filipe, C.D., and Brennan, J.D.: Printed paper sensors for serum lactate dehydrogenase using pullulan-based inks to immobilize reagents. Anal. Chem. 87, 9288 (2015).Google Scholar
Hsieh, P.Y., Monsur Ali, M., Tram, K., Jahanshahi-Anbuhi, S., Brown, C.L., Brennan, J.D., Filipe, C.D., and Li, Y.: RNA protection is effectively achieved by pullulan film formation. ChemBioChem 18, 502 (2017).Google Scholar