Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T23:45:02.923Z Has data issue: false hasContentIssue false

N-doped carbon nanosheets as high-performance anodes for Li- and Na-ion batteries

Published online by Cambridge University Press:  18 November 2019

Aswathy K. Radhakrishnan
Affiliation:
Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
Shantikumar Nair
Affiliation:
Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
Dhamodaran Santhanagopalan*
Affiliation:
Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
*
a)Address all correspondence to this author. e-mail: dsgopalan20710@aims.amrita.edu
Get access

Abstract

A scalable preparation of in situ N-doped disordered carbon nanosheets from reduced melamine formaldehyde resin is demonstrated. For the first time, nanosheets prepared by such a process have been tested as anodes for lithium ion and sodium ion batteries. Li-ion battery half-cell delivers a reversible capacity of about 500 mA h/g at a specific current of 100 mA/g, and also a capacity of 250 mA h/g at a specific current of 500 mA/g is retained after 600 cycles. For Na-ion batteries, a reasonable capacity of about 150 mA h/g is recorded at a specific current of 50 mA/g, and a capacity of 120 mA h/g at a specific current of 250 mA/g is retained after 350 cycles. The sloppy low-voltage profile obtained for both the lithium ion and sodium ion cells corresponds to the nanosheet anodes, being soft carbon-like, thereby demonstrating superior cycling stability and safety by avoiding metal plating and dendrite formation.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Goriparti, K.S., Miele, E., Angelis, F.D., Fabrizio, E.D., Zaccaria, R.P., and Capiglia, C.: Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 257, 421 (2014).CrossRefGoogle Scholar
Jache, B. and Adelhelm, P.: Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew. Chem., Int. Ed. 53, 10169 (2014).CrossRefGoogle ScholarPubMed
Kim, H., Hong, J., Yoon, G., Kim, H., Park, K., Park, M., Yoonc, W., and Kang, K.: Sodium intercalation chemistry in graphite. Energy Environ. Sci. 8, 2963 (2015).CrossRefGoogle Scholar
Irisarri, E., Ponrouch, A., and Palacin, M.R.: Review–hard carbon negative electrode materials for sodium-ion batteries. J. Electrochem. Soc. 162, A2476 (2015).CrossRefGoogle Scholar
Etacheri, V., Hong, C.N., and Pol, V.G.: Upcycling of packing-peanuts into carbon microsheet anodes for lithium-ion batteries. Environ. Sci. Technol. 49, 11191 (2015).CrossRefGoogle ScholarPubMed
Gajewska, M., Tata, A., Proniewicz, E., and Molenda, M.: Bio-derived carbon nanostructures for high-performance lithium-ion batteries. Carbon 145, 426 (2019).Google Scholar
Bin, D.S., Li, Y., Sun, Y.G., Duan, S.Y., Lu, Y., Ma, J., Cao, A.M., Hu, Y.S., and Wan, L.J.: Structural engineering of multishelled hollow carbon nanostructures for high-performance Na-ion battery anode. Adv. Energy Mater. 8, 1800855 (2018).CrossRefGoogle Scholar
Yang, F., Zhang, Z., Zhao, K.D.X., Chen, W., Lai, Y., and Li, J.: Dopamine derived nitrogen-doped carbon sheets as anode materials for high performance sodium ion batteries. Carbon 91, 88 (2015).CrossRefGoogle Scholar
Du, J., Liu, L., Yu, Y., Hu, Z., Liu, B., and Chen, A.: N-doped hollow carbon spheres/sheets composite for electrochemical capacitor. ACS Appl. Mater. Interfaces 10, 40062 (2018).CrossRefGoogle ScholarPubMed
Xi, X., Wu, D., Han, L., Yu, Y., Su, Y., Tang, W., and Liu, R.: Highly uniform carbon sheets with orientation-adjustable ordered mesopores. ACS Nano 12, 5436 (2018).CrossRefGoogle ScholarPubMed
Xie, F., Xu, Z., Jensen, A.C.S., Au, H., Lu, Y., Peters, V.A., Drew, A.J., Hu, Y.S., and Titirici, M.M.: Hard-soft carbon composite anodes with synergistic sodium storage performance. Adv. Funct. Mater. 29, 1901072 (2019).CrossRefGoogle Scholar
Jian, Z., Bommier, C., Luo, L., Li, Z., Wang, W., Wang, C., Greaney, P.A., and Ji, X.: Insights on the mechanism of Na-ion storage in soft carbon anode. Chem. Mater. 29, 2314 (2017).CrossRefGoogle Scholar
Yi, Z., Liang, Y., Lei, X., Wang, C., and Sun, J.: Low-temperature synthesis of nanosized disordered carbon spheres as an anode material for lithium ion batteries. Mater. Lett. 61, 4199 (2007).CrossRefGoogle Scholar
Hou, H., Qui, X., Wei, W., Zhang, Y., and Ji, X.: Carbon anode materials for advanced sodium-ion batteries. Adv. Energy Mater. 7, 1602898 (2017).CrossRefGoogle Scholar
He, B., Li, W-C., and Lu, A-H.: High nitrogen-content carbon nanosheets formed using the Schiff-base reaction in a molten salt medium as efficient anode materials for lithium-ion batteries. J. Mater. Chem. A 3, 579 (2015).CrossRefGoogle Scholar
Guo, Y., Liu, W., Wu, R., and Sun, L.: Marine biomass-derived porous carbon sheets with tuneable N-doping content for superior sodium ion storage. ACS Appl. Mater. Interfaces 10, 44 (2018).CrossRefGoogle Scholar
Reddy, A.L.M., Srivastava, A., Gowda, S.R., Gullapalli, H., Dubey, M., and Ajayan, P.M.: Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4, 6337 (2010).CrossRefGoogle ScholarPubMed
Mukherjee, R., Thomas, A.V., Krishnamurthy, A., and Koratkar, N.: Photothermally reduced graphene as high-power anodes for lithium ion batteries. ACS Nano 6, 7867 (2012).CrossRefGoogle ScholarPubMed
Loeffler, N., Bresser, D., and Passerini, S.: Secondary lithium-ion battery anodes: From first commercial batteries to recent research activities. Johnson Matthey Technol. Rev. 59, 34 (2015).CrossRefGoogle Scholar
Chen, W., Wan, M., Liu, Q., Xiong, X., Yu, F., and Huang, Y.: Heteroatom doped carbon materials: Synthesis, mechanism, and application for sodium ion batteries. Small Methods 3, 1800323 (2018).CrossRefGoogle Scholar
Wu, J., Pan, Z., Zhang, Y., Wang, B., and Peng, H.: The recent progress of nitrogen-doped carbon nanomaterials for electrochemical batteries. J. Mater. Chem. A 6, 12932 (2018).CrossRefGoogle Scholar
Hou, J., Cao, C., Idrees, F., and Ma, X.: Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh–capacity battery anodes and supercapacitors. ACS Nano 9, 2556 (2015).CrossRefGoogle ScholarPubMed
Su, F., Poh, C.K., Chen, J.S., Xu, G., Wang, D., Li, Q., Lin, J., and Lou, X.W.: Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energy Environ. Sci. 4, 717 (2011).CrossRefGoogle Scholar
Wang, X., Weng, Q., Liu, X., Wang, X., Tang, D.M., Tian, W., Zhang, C., Yi, W., Liu, D., Bando, Y., and Golberg, D.: Atomistic origins of high rate capability and capacity of N-doped graphene for lithium storage. Nano Lett. 14, 1164 (2014).CrossRefGoogle ScholarPubMed
Ma, C., Shao, X., and Cao, D.: Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: A first-principles study. J. Mater. Chem. 22, 8911 (2012).CrossRefGoogle Scholar
Ullah, S., Bustam, M.A., Nadeem, M., Naz, M.Y., Tan, W.L., and Shariff, A.M.: Synthesis and thermal degradation studies of melamine formaldehyde resins. Sci. World J. 2014, 940502 (2014).CrossRefGoogle ScholarPubMed
Li, M., Zhang, Y., Yang, L., Liu, Y., and Yao, J.: Hollow melamine resin-based carbon spheres/graphene composite with excellent performance for supercapacitors. Electrochim. Acta 166, 310 (2015).CrossRefGoogle Scholar
Tan, H., Tang, J., Henzie, J., Li, Y., Xu, X., Chen, T., Wang, Z., Wang, J., Ide, Y., Bando, Y., and Yamauchi, Y.: Assembly of hollow carbon nanospheres on graphene nanosheets and creation of iron-nitrogen-doped porous carbon for oxygen reduction. ACS Nano 12, 5674 (2018).CrossRefGoogle ScholarPubMed
Sui, Z.Y., Wang, C., Yang, Q.S., Shu, K., Liu, Y.W., Han, B.H., and Wallace, G.G.: A highly nitrogen-doped porous graphene—An anode material for lithium ion batteries. J. Mater. Chem. A 3, 18229 (2015).CrossRefGoogle Scholar
Luo, W., Jian, Z., Xing, Z., Wang, W., Bommier, C., Lerner, M.M., and Ji, X.: Electrochemically expandable soft carbon as anodes for Na-ion batteries. ACS Cent. Sci. 1, 516 (2015).CrossRefGoogle ScholarPubMed
Zhang, W., Lan, M., Di, Y., Zhu, X., Ng, T., Xia, J., Liu, W., Meng, X., Wang, P., and Lee, C.: Carbon dot-based fluorescence turn-on sensor for hydrogen peroxide with a photo-induced electron transfer mechanism. Chem. Commun. 51, 15574 (2015).Google Scholar
Hua, M., Zhoua, H., Gana, X., Yanga, L., Huang, Z-H., Wang, D-W., Kang, F., and Lv, R.: Ultrahigh rate sodium ion storage with nitrogen-doped expanded graphite oxide in ether-based electrolyte. J. Mater. Chem. A 6, 1582 (2018).CrossRefGoogle Scholar
Hu, L., Cheng, G., Ren, J., Wang, F., and Ren, J.: Conformal carbon coating on hard carbon anode derived from propionaldehyde for excellent performance of lithium-ion batteries. Int. J. Electrochem. Sci. 14, 2804 (2019).CrossRefGoogle Scholar
Kim, K., Lee, T., Kim, H., Lim, S., and Lee, S.: A hard carbon/microcrystalline graphite/carbon composite with a core–shell structure as novel anode materials for lithium-ion batteries. Electrochim. Acta 135, 27 (2014).CrossRefGoogle Scholar
Cabello, M., Bai, X., Chyrka, T., Ortiz, G.F., Lavela, P., Alcantara, R., and Tirado, J.L.: On the reliability of sodium co-intercalation in expanded graphite prepared by different methods as anodes for sodium-ion batteries. J. Electrochem. Soc. 164, A3804 (2017).CrossRefGoogle Scholar
Zhang, H-W., Lu, J-M., Yang, L., Hu, M-X., Huang, Z-H., Lu, R-T., and Kang, F-Y.: N,S co-doped porous carbon nanospheres with a high cycling stability for sodium ion batteries. New Carbon Mater. 32, 517 (2017).CrossRefGoogle Scholar
Wen, Y., He, K., Zhu, Y., Han, F., Xu, Y., Matsuda, I., Ishii, Y., Cumings, J., and Wang, C.: Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun. 5, 4033 (2014).CrossRefGoogle ScholarPubMed